Chapter 3

The Scalar Product

The scalar product is a way of multiplying two vectors to produce a scalar (real number). Let \mathbf{u} and \mathbf{v} be nonzero vectors represented by $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

We define the angle between \mathbf{u} and \mathbf{v} to be the angle θ (in radians) between $\overrightarrow{A B}$ and $\overrightarrow{A C}$, with $0 \leqslant \theta \leqslant \pi$. A handy chart for converting between degrees and radians is given below.

radians	0	$\frac{\pi}{180}$	$\frac{\pi}{12}$	$\frac{\pi}{10}$	$\frac{\pi}{6}$	$\frac{\pi}{5}$	$\frac{\pi}{4}$	1	$\frac{\pi}{3}$	$\frac{2 \pi}{5}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	π	2π
degrees	0	1	15	18	30	36	45	$\frac{180}{\pi} \approx 57.3$	60	72	90	120	135	180	360

Definition 3.1. The scalar product (or dot product) of \mathbf{u} and \mathbf{v} is denoted $\mathbf{u} \cdot \mathbf{v}$, and is defined to be 0 if either $\mathbf{u}=\mathbf{0}$ or $\mathbf{v}=\mathbf{0}$. If both $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$, we define $\mathbf{u} \cdot \mathbf{v}$ by

$$
\mathbf{u} \cdot \mathbf{v}:=|\mathbf{u}||\mathbf{v}| \cos \theta,
$$

where θ is the angle between \mathbf{u} and \mathbf{v}. (Note that I have had to specify what θ is in the definition itself; you must do the same.) We say that \mathbf{u} and \mathbf{v} are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.

Note that \mathbf{u} and \mathbf{v} are orthogonal if and only if $\mathbf{u}=\mathbf{0}$ or $\mathbf{v}=\mathbf{0}$ or the angle between \mathbf{u} and \mathbf{v} is $\frac{\pi}{2}$. (This includes the case $\mathbf{u}=\mathbf{v}=\mathbf{0}$.)
Note. Despite the notation concealing this fact somewhat, the scalar product is a function. Its codomain (and range) is \mathbb{R}, and its domain is the set of ordered pairs of (free) vectors. As usual, we must make sure that the function is defined (in a unique manner) for all elements of the domain, and this includes those pairs having the zero vector in one or both positions.

3.1 The scalar product using coördinates

Theorem 3.2. Let $\mathbf{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$. Then $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$.
Proof. If $\mathbf{u}=\mathbf{0}$ (in which case $u_{1}=u_{2}=u_{3}=0$) or $\mathbf{v}=\mathbf{0}$ (in which case $v_{1}=v_{2}=$ $v_{3}=0$) we have $\mathbf{u} \cdot \mathbf{v}=0=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$, as required.

Now suppose that $\mathbf{u}, \mathbf{v} \neq 0$, and let θ be the angle between \mathbf{u} and \mathbf{v}. We calculate $|\mathbf{u}+\mathbf{v}|^{2}$ in two different ways. Firstly we use coördinates.

$$
\begin{aligned}
|\mathbf{u}+\mathbf{v}|^{2}=\left|\left(\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
u_{3}+v_{3}
\end{array}\right)\right|^{2} & =\left(u_{1}+v_{1}\right)^{2}+\left(u_{2}+v_{2}\right)^{2}+\left(u_{3}+v_{3}\right)^{2} \\
& =u_{1}^{2}+2 u_{1} v_{1}+v_{1}^{2}+u_{2}^{2}+2 u_{2} v_{2}+v_{2}^{2}+u_{3}^{2}+2 u_{3} v_{3}+v_{3}^{2} \\
& =|\mathbf{u}|^{2}+|\mathbf{v}|^{2}+2\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right),
\end{aligned}
$$

that is:

$$
\begin{equation*}
|\mathbf{u}+\mathbf{v}|^{2}=|\mathbf{u}|^{2}+|\mathbf{v}|^{2}+2\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) . \tag{3.1}
\end{equation*}
$$

Our second way to do this is geometrical. Pick a point A, and consider the parallelogram $A B C D$, where $\overrightarrow{A B}$ represents \mathbf{u} and $\overrightarrow{A D}$ represents \mathbf{v}. Thus $\overrightarrow{B C}$ represents \mathbf{v}, and so $\overrightarrow{A C}$ represents $\mathbf{u}+\mathbf{v}$ by the Triangle Rule. Drop a perpendicular from C to the line through A and B, meeting the said line at N, and let M be an arbitrary point on the line through A and B strictly to 'right' of B (i.e. when traversing the line through A and B in a certain direction we encounter the points in the order $A, B, M)$. Let θ be the angle between \mathbf{u} and \mathbf{v} (i.e. θ is the size of angle $B A D$). A result from Euclidean geometry states that the angle $M B C$ also has size θ. The following diagram has all this information.

(Note that this diagram is drawn with $0<\theta<\frac{\pi}{2}$. If $\theta=\frac{\pi}{2}$ then $N=B$, and if $\theta>\frac{\pi}{2}$ then N lies to the 'left' of B, probably between A and B, but possibly even to the 'left' of A.) We have $|\overrightarrow{A N}|=|(|\mathbf{u}|+|\mathbf{v}| \cos \theta)|$, even when $\theta \geqslant \frac{\pi}{2}$, and even when N is to the 'left' of A. We also have that $|\overrightarrow{C N}|=|\mathbf{v}||\sin \theta|$. Applying Pythagoras (which is fine here even when $\theta \geqslant \frac{\pi}{2}$), and using the fact that $|a|^{2}=a^{2}$ whenever $a \in \mathbb{R}$, we obtain:

$$
\begin{aligned}
|\mathbf{u}+\mathbf{v}|^{2}=|\overrightarrow{A C}|^{2}=|\overrightarrow{A N}|^{2}+|\overrightarrow{C N}|^{2} & =(|\mathbf{u}|+|\mathbf{v}| \cos \theta)^{2}+(|\mathbf{v}| \sin \theta)^{2} \\
& =|\mathbf{u}|^{2}+2|\mathbf{u}||\mathbf{v}| \cos \theta+|\mathbf{v}|^{2}(\cos \theta)^{2}+|\mathbf{v}|^{2}(\sin \theta)^{2} \\
& =|\mathbf{u}|^{2}+|\mathbf{v}|^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+2 \mathbf{u} \cdot \mathbf{v}
\end{aligned}
$$

Here $\cos ^{2} \theta$ means $(\cos \theta)^{2}$ and $\sin ^{2} \theta$ means $(\sin \theta)^{2}$. Using the standard identity that $\cos ^{2} \theta+\sin ^{2} \theta=1$ for all θ, we obtain:

$$
\begin{equation*}
|\mathbf{u}+\mathbf{v}|^{2}=|\mathbf{u}|^{2}+|\mathbf{v}|^{2}+2 \mathbf{u} \cdot \mathbf{v} . \tag{3.2}
\end{equation*}
$$

Comparing Equations 3.1 and 3.2 gives us the result.
Note that if $\mathbf{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$ then $\mathbf{u} \cdot \mathbf{u}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=|\mathbf{u}|^{2}($ even when $\mathbf{u}=\mathbf{0})$.
Example. We determine $\cos \theta$, where θ is the angle between $\mathbf{u}=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$ and $\mathbf{v}=$ $\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)$. We have $|\mathbf{u}|=\sqrt{2^{2}+(-1)^{2}+1^{2}}=\sqrt{6}$ and $|\mathbf{v}|=\sqrt{1^{2}+2^{2}+(-3)^{2}}=\sqrt{14}$, along with:

$$
\mathbf{u} \cdot \mathbf{v}=2 \times 1+(-1) \times 2+1 \times(-3)=2-2-3=-3
$$

The formula $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta$ gives $-3=\sqrt{6} \sqrt{14} \cos \theta=2 \sqrt{21} \cos \theta$, the last step being since $\sqrt{6} \sqrt{14}=\sqrt{2} \sqrt{3} \sqrt{2} \sqrt{7}=2 \sqrt{21}$. Thus we get:

$$
\cos \theta=\frac{-3}{2 \sqrt{21}}=-\frac{1}{2} \sqrt{\frac{3}{7}}
$$

(The last equality was obtained by cancelling a factor of $\sqrt{3}$ from the numerator and denominator. There is no need to do this if it does not make the fraction 'neater', and here I do not think it does.)

Note. The following is an example of totally unacceptable working when calculating a dot product.

$$
\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \times 3 \\
(-1) \times(-2) \\
(-2) \times 1
\end{array}\right)=\left(\begin{array}{c}
3 \\
2 \\
-2
\end{array}\right)=3+2+(-2)=3
$$

This is because the first and third so-called equalities are nothing of the sort. The first is trying to equate a scalar (LHS) with a vector (RHS), while the third tries to equate a vector with a scalar. The above has $\boldsymbol{T} \boldsymbol{W} \boldsymbol{O}$ errors, and we shall simply mark such stuff as being wrong.

3.2 Properties of the scalar product

Let $\mathbf{u}, \mathbf{v} \neq \mathbf{0}$ and let θ be the angle between \mathbf{u} and \mathbf{v}. From the definition $\mathbf{u} \cdot \mathbf{v}=$ $|\mathbf{u}||\mathbf{v}| \cos \theta$ of the scalar product we observe that:

- if $0 \leqslant \theta<\frac{\pi}{2}$ then $\mathbf{u} \cdot \mathbf{v}>0$;
- if $\theta=\frac{\pi}{2}$ then $\mathbf{u} \cdot \mathbf{v}=0$; and
- if $\frac{\pi}{2}<\theta \leqslant \pi$ then $\mathbf{u} \cdot \mathbf{v}<0$.

Moreover,

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}
$$

Now let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be any vectors. Then:

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$;
2. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=(\mathbf{u} \cdot \mathbf{v})+(\mathbf{u} \cdot \mathbf{w})$;
3. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=(\mathbf{u} \cdot \mathbf{w})+(\mathbf{v} \cdot \mathbf{w})$;
4. $\mathbf{u} \cdot(\alpha \mathbf{v})=\alpha(\mathbf{u} \cdot \mathbf{v})=(\alpha \mathbf{u}) \cdot \mathbf{v}$ for all scalars α;
5. $\mathbf{u} \cdot(-\mathbf{v})=(-\mathbf{u}) \cdot \mathbf{v}=-(\mathbf{u} \cdot \mathbf{v})$; and
6. $(-\mathbf{u}) \cdot(-\mathbf{v})=\mathbf{u} \cdot \mathbf{v}$.

There is however no (non-vacuous) associative law for the dot product. This is because neither of the quantities $(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}$ and $\mathbf{u} \cdot(\mathbf{v} \cdot \mathbf{w})$ is defined. (In both cases, we are trying to form the dot product of a vector and a scalar in some order, and in neither order does such a product exist.)

Each of the above equalities can be proved by using Theorem 3.2, which expresses the dot product in terms of coördinates. To prove (1) we observe that:

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}=v_{1} u_{1}+v_{2} u_{2}+v_{3} u_{3}=\mathbf{v} \cdot \mathbf{u}
$$

In order to prove the equality $\mathbf{u} \cdot(\alpha \mathbf{v})=\alpha(\mathbf{u} \cdot \mathbf{v})$ of (4) we observe the following.

$$
\begin{aligned}
\mathbf{u} \cdot(\alpha \mathbf{v})=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
\alpha v_{1} \\
\alpha v_{2} \\
\alpha v_{3}
\end{array}\right) & =u_{1}\left(\alpha v_{1}\right)+u_{2}\left(\alpha v_{2}\right)+u_{3}\left(\alpha v_{3}\right) \\
& =\alpha\left(u_{1} v_{1}\right)+\alpha\left(u_{2} v_{2}\right)+\alpha\left(u_{3} v_{3}\right) \\
& =\alpha\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right)=\alpha(\mathbf{u} \cdot \mathbf{v}) .
\end{aligned}
$$

The proofs of the rest of these equalities are left as exercises.

3.3 Equation of a plane

Let \mathbf{n} be a vector and Π be a plane. We say that \mathbf{n} is orthogonal to Π (or Π is orthogonal to \mathbf{n}) if for all points A, B on Π, we have that \mathbf{n} is orthogonal to the vector represented by $\overrightarrow{A B}$. We also say that \mathbf{n} is a normal (or normal vector) to Π, hence the notation \mathbf{n}.

Suppose that $\mathbf{n} \neq \mathbf{0}, A$ is a point, and we wish to determine an equation of the (unique) plane Π that is orthogonal to \mathbf{n} and contains A. Now a point R, with position vector \mathbf{r}, is on Π exactly when $\overrightarrow{A R}$ represents a vector orthogonal to \mathbf{n}, that is when $(\mathbf{r}-\mathbf{a}) \cdot \mathbf{n}=0$, where \mathbf{a} is the position vector of \mathbf{a}. Equivalently, we have $\mathbf{r} \cdot \mathbf{n}-\mathbf{a} \cdot \mathbf{n}=0$, which gives:

$$
\mathbf{r} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}
$$

a vector equation of the plane Π, where \mathbf{r} is the position vector of an arbitary point on Π, a is the position vector of a fixed point on Π, and \mathbf{n} is a nonzero vector orthogonal to Π. In coördinates, we let

$$
\mathbf{r}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \mathbf{n}=\left(\begin{array}{c}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right) \quad \text { and } \quad \mathbf{a}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) .
$$

Then the point (x, y, z) is on Π exactly when:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)
$$

that is, when

$$
n_{1} x+n_{2} y+n_{3} z=d,
$$

where $d=a_{1} n_{1}+a_{2} n_{2}+a_{3} n_{3}$. This is a Cartesian equation of the plane Π.
Example. We find a Cartesian equation for the plane through $A=(2,-1,3)$ and orthogonal to $\mathbf{n}=\left(\begin{array}{c}-2 \\ 3 \\ 5\end{array}\right)$. A vector equation is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \cdot\left(\begin{array}{c}-2 \\ 3 \\ 5\end{array}\right)=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right) \cdot\left(\begin{array}{c}-2 \\ 3 \\ 5\end{array}\right)$, which gives rise to the Cartesian equation $-2 x+3 y+5 z=8$.

Example. The equation $2 x-y+3 z=6$ specifies the plane Π orthogonal to $\mathbf{n}=\left(\begin{array}{c}2 \\ -1 \\ 3\end{array}\right)$ and containing the point $(1,-1,1)$. This is because we can write the equation as

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right)
$$

which has the form $\mathbf{r} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$ for suitable vectors \mathbf{r} and \mathbf{a}. The point $(1,2,3)$ is not on Π since $2 \times 1+(-1) \times 2+3 \times 3=2-2+9=9 \neq 6$. The point $(1,2,2)$ is on Π since $2 \times 1+(-1) \times 2+3 \times 2=2-2+6=6$.

Note that the coördinates of \mathbf{n} can always be taken to be the coefficients of x, y, z in the Cartesian equation. (It is valid to multiply such an \mathbf{n} by any nonzero scalar, but must ensure we do the corresponding operations to the right-hand sides of any equations we use. Thus both $2 x-y+3 x=6$ and $-4 x+2 y-6 x=-12$ are Cartesian equations of the plane Π in the second example above.) Finding a point on Π is harder. A sensible strategy is to set two of x, y, z to be zero (where the coefficient of the third is nonzero). Here setting $x=y=0$ gives $3 z=6$, whence $z=2$, so that $(0,0,2)$ is on Π. Setting $x=z=0$ gives $y=-6$, so that $(0,-6,0)$ is on Π, and setting $y=z=0$ gives $x=3$, so that $(3,0,0)$ is on Π. (This sensible strategy does not find the point $(1,-1,1)$ that is on Π.)

In the case of the plane Π^{\prime} with equation $x+y=1$, setting $x=z=0$ gives the point $(0,1,0)$ on Π^{\prime}, while setting $y=z=0$ gives the point $(1,0,0)$ on Π^{\prime}. But if we set $x=y=0$, we end up with the equation $0=1$, which has no solutions for z, so we do not find a point here.

Note. [Not lectured.] Another form of a vector equation for a plane, corresponding to the vector equation for a line is as follows. Take any 3 points A, B, C on Π such that A, B, C are not on the same line. Let A, B, C have position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ respectively. Then a vector equation for Π is:

$$
\mathbf{r}=\mathbf{a}+\lambda(\mathbf{b}-\mathbf{a})+\mu(\mathbf{c}-\mathbf{a}),
$$

where λ and μ range (independently) over the whole of \mathbb{R}.

3.4 The distance from a point to a plane

Let Π be the plane having equation $a x+b y+c z=d$, so that Π is orthogonal to $\mathbf{n}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \neq \mathbf{0}$. Let Q be a point, and let M be the point on Π closest to Q.

Let \mathbf{m}, \mathbf{q} be the position vectors of M, Q. Then the vector $\mathbf{q}-\mathbf{m}$ represented by $\overrightarrow{M Q}$ is orthogonal to Π, and so (since we are in just 3 dimensions) $\mathbf{q}-\mathbf{m}$ is a scalar multiple of \mathbf{n}, that is $\mathbf{q}-\mathbf{m}=\lambda \mathbf{n}$ for some scalar $\lambda \in \mathbb{R}$. Therefore:

$$
(\mathbf{q}-\mathbf{m}) \cdot \mathbf{n}=(\lambda \mathbf{n}) \cdot \mathbf{n}=\lambda(\mathbf{n} \cdot \mathbf{n})=\lambda|\mathbf{n}|^{2},
$$

and so $\mathbf{q} \cdot \mathbf{n}-\mathbf{m} \cdot \mathbf{n}=\lambda|\mathbf{n}|^{2}$. But \mathbf{m} is on Π, which has equation $\mathbf{r} \cdot \mathbf{n}=d$, and so $\mathbf{m} \cdot \mathbf{n}=d$. Therefore $\mathbf{q} \cdot \mathbf{n}-d=\lambda|\mathbf{n}|^{2}$, and thus:

$$
\lambda=\frac{\mathbf{q} \cdot \mathbf{n}-d}{|\mathbf{n}|^{2}}
$$

But the distance from Q to Π (which is the distance from Q to M, where M is the closest point on Π to Q) is in fact $|\overrightarrow{M Q}|=|\lambda \mathbf{n}|=|\lambda||\mathbf{n}|$, that is:

$$
\left|\frac{\mathbf{q} \cdot \mathbf{n}-d}{|\mathbf{n}|^{2}}\right||\mathbf{n}|=\frac{|\mathbf{q} \cdot \mathbf{n}-d|}{|\mathbf{n}|}
$$

If one looks at other sources one may see a superficially dissimilar formula for this distance. To obtain this, we let P be any point on Π, and let \mathbf{p} be the position vector of \mathbf{p}, so that $\mathbf{p} \cdot \mathbf{n}=d$. Thus $\mathbf{q} \cdot \mathbf{n}-d=\mathbf{q} \cdot \mathbf{n}-\mathbf{p} \cdot \mathbf{n}=(\mathbf{q}-\mathbf{p}) \cdot \mathbf{n}$. Therefore the distance can also be expressed as:

$$
\frac{|(\mathbf{q}-\mathbf{p}) \cdot \mathbf{n}|}{|\mathbf{n}|}=\left|(\mathbf{q}-\mathbf{p}) \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right|=\left|\operatorname{free}(\overrightarrow{P Q}) \cdot \frac{\mathbf{n}}{|\mathbf{n}|}\right|=|(\mathbf{q}-\mathbf{p}) \cdot \hat{\mathbf{n}}|,
$$

where $\operatorname{free}(\overrightarrow{P Q})=\mathbf{q}-\mathbf{p}$ is the (free) vector represented by $\overrightarrow{P Q}$, and $\hat{\mathbf{n}}$ is the unit vector in the direction of \mathbf{n}.

Example. We find the distance of $(3,-2,4)$ from the plane defined by $2 x+3 y-5 z=7$. With our notation we have $\mathbf{n}=\left(\begin{array}{c}2 \\ 3 \\ -5\end{array}\right), d=7, \mathbf{q}=\left(\begin{array}{c}3 \\ -2 \\ 4\end{array}\right)$, and so the distance is

$$
\frac{|\mathbf{q} \cdot \mathbf{n}-d|}{|\mathbf{n}|}=\frac{|(6-6-20)-7|}{\sqrt{2^{2}+3^{2}+(-5)^{2}}}=\frac{27}{\sqrt{38}} .
$$

3.5 The distance from a point to a line

Let ℓ be the line with (vector) equation $\mathbf{r}=\mathbf{p}+\lambda \mathbf{u}$, where $\mathbf{u} \neq \mathbf{0}$, and let Q be a point with position vector \mathbf{q}. If $Q=P$ (where P has position vector P), then Q is on ℓ, and the distance between Q and ℓ is 0 . Else we drop a normal from Q to ℓ meeting ℓ at the point M.

The distance from Q to ℓ is $|\overrightarrow{M Q}|$, that is $|\mathbf{q}-\mathbf{m}|$, is easily seen from the diagram to be $|\overrightarrow{P Q}| \sin \theta$, where θ is the angle between $\mathbf{q}-\mathbf{p}$ (the vector that $\overrightarrow{P Q}$ represents) and the vector \mathbf{u} (which is the direction [up to opposite] of the line ℓ). [Pedants should recall that $\mathbf{u} \neq \mathbf{0}$, and also note that $\sin \theta \geqslant 0$, since $0 \leqslant \theta \leqslant \pi$.] For now we content ourselves with noting that this distance is $|\mathbf{q}-\mathbf{p}| \sin \theta$ (which 'morally' applies even when $\mathbf{q}=\mathbf{p}$). When we encounter the cross product, we shall be able to express this distance as $|(\mathbf{q}-\mathbf{p}) \times \mathbf{u}| /|\mathbf{u}|$. Note that $\sin \theta$ can be calculated using dot products, since $\cos \theta$ can be so calculated, and we have $\sin \theta=\sqrt{1-\cos ^{2} \theta}$. On calculating $|\mathbf{q}-\mathbf{p}| \sin \theta$, we find that the distance from Q to ℓ is

$$
\frac{\sqrt{|\mathbf{q}-\mathbf{p}|^{2}|\mathbf{u}|^{2}-((\mathbf{q}-\mathbf{p}) \cdot \mathbf{u})^{2}}}{|\mathbf{u}|}
$$

a formula which applies even when $\mathbf{q}=\mathbf{p}$. In the case when $|\mathbf{u}|=1$ the above formula simplifies to $\sqrt{|\mathbf{q}-\mathbf{p}|^{2}-((\mathbf{q}-\mathbf{p}) \cdot \mathbf{u})^{2}}$.

Exercise. Use methods from Calculus I to minimise the distance from R to Q, where R, the typical point on ℓ, has position vector \mathbf{r} with $\mathbf{r}=\mathbf{p}+\lambda \mathbf{u}$. Show that this minimum agrees with the distance from Q to ℓ given above. Hint: The quantity $|\mathbf{r}-\mathbf{q}|$ is always at least 0 . So $|\mathbf{r}-\mathbf{q}|$ is minimal precisely when $|\mathbf{r}-\mathbf{q}|^{2}$ is minimal. But $|\mathbf{r}-\mathbf{q}|^{2}=(\mathbf{r}-\mathbf{q}) \cdot(\mathbf{r}-\mathbf{q})$, and this is easier to deal with.

