
Chapter 3

The Scalar Product

The scalar product is a way of multiplying two vectors to produce a scalar (real number).

Let u and v be nonzero vectors represented by
−→
AB and

−→
AC.
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We define the angle between u and v to be the angle θ (in radians) between
−→
AB and

−→
AC, with 0 6 θ 6 π. A handy chart for converting between degrees and radians is given
below.

radians 0 π
180

π
12

π
10

π
6

π
5

π
4

1 π
3

2π
5

π
2

2π
3

3π
4

π 2π

degrees 0 1 15 18 30 36 45 180
π
≈ 57.3 60 72 90 120 135 180 360

Definition 3.1. The scalar product (or dot product) of u and v is denoted u·v, and is
defined to be 0 if either u = 0 or v = 0. If both u 6= 0 and v 6= 0, we define u·v by

u·v := |u||v| cos θ,

where θ is the angle between u and v. (Note that I have had to specify what θ is in the
definition itself; you must do the same.) We say that u and v are orthogonal if u·v = 0.

Note that u and v are orthogonal if and only if u = 0 or v = 0 or the angle between u
and v is π

2
. (This includes the case u = v = 0.)

Note. Despite the notation concealing this fact somewhat, the scalar product is a func-
tion . Its codomain (and range) is R, and its domain is the set of ordered pairs of (free)
vectors. As usual, we must make sure that the function is defined (in a unique manner)
for all elements of the domain, and this includes those pairs having the zero vector in
one or both positions.
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3.1 The scalar product using coördinates

Theorem 3.2. Let u =

 u1

u2

u3

 and v =

 v1

v2

v3

. Then u·v = u1v1 + u2v2 + u3v3.

Proof. If u = 0 (in which case u1 = u2 = u3 = 0) or v = 0 (in which case v1 = v2 =
v3 = 0) we have u·v = 0 = u1v1 + u2v2 + u3v3, as required.

Now suppose that u,v 6= 0, and let θ be the angle between u and v. We calculate
|u + v|2 in two different ways. Firstly we use coördinates.

|u + v|2 =

∣∣∣∣∣∣
 u1 + v1

u2 + v2

u3 + v3

∣∣∣∣∣∣
2

= (u1 + v1)
2 + (u2 + v2)

2 + (u3 + v3)
2

= u2
1 + 2u1v1 + v2

1 + u2
2 + 2u2v2 + v2

2 + u2
3 + 2u3v3 + v2

3

= |u|2 + |v|2 + 2(u1v1 + u2v2 + u3v3),

that is:
|u + v|2 = |u|2 + |v|2 + 2(u1v1 + u2v2 + u3v3). (3.1)

Our second way to do this is geometrical. Pick a point A, and consider the parallelogram

ABCD, where
−→
AB represents u and

−→
AD represents v. Thus

−→
BC represents v, and so−→

AC represents u + v by the Triangle Rule. Drop a perpendicular from C to the line
through A and B, meeting the said line at N , and let M be an arbitrary point on the
line through A and B strictly to ‘right’ of B (i.e. when traversing the line through A
and B in a certain direction we encounter the points in the order A, B, M). Let θ be
the angle between u and v (i.e. θ is the size of angle BAD). A result from Euclidean
geometry states that the angle MBC also has size θ. The following diagram has all this
information.
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(Note that this diagram is drawn with 0 < θ < π
2
. If θ = π

2
then N = B, and if θ > π

2

then N lies to the ‘left’ of B, probably between A and B, but possibly even to the ‘left’

of A.) We have |
−→
AN | = |(|u|+ |v| cos θ)|, even when θ > π

2
, and even when N is to the

‘left’ of A. We also have that |
−→
CN | = |v||sin θ|. Applying Pythagoras (which is fine here

even when θ > π
2
), and using the fact that |a|2 = a2 whenever a ∈ R, we obtain:

|u + v|2 = |
−→
AC|2 = |

−→
AN |2 + |

−→
CN |2 = (|u|+ |v| cos θ)2 + (|v| sin θ)2

= |u|2 + 2|u||v| cos θ + |v|2(cos θ)2 + |v|2(sin θ)2

= |u|2 + |v|2(cos2 θ + sin2 θ) + 2u·v.
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Here cos2 θ means (cos θ)2 and sin2 θ means (sin θ)2. Using the standard identity that
cos2 θ + sin2 θ = 1 for all θ, we obtain:

|u + v|2 = |u|2 + |v|2 + 2u·v. (3.2)

Comparing Equations 3.1 and 3.2 gives us the result.

Note that if u =

 u1

u2

u3

 then u·u = u2
1 + u2

2 + u2
3 = |u|2 (even when u = 0).

Example. We determine cos θ, where θ is the angle between u =

 2
−1
1

 and v = 1
2
−3

. We have |u| =
√

22 + (−1)2 + 12 =
√

6 and |v| =
√

12 + 22 + (−3)2 =
√

14,

along with:
u·v = 2× 1 + (−1)× 2 + 1× (−3) = 2− 2− 3 = −3.

The formula u·v = |u||v| cos θ gives −3 =
√

6
√

14 cos θ = 2
√

21 cos θ, the last step being
since

√
6
√

14 =
√

2
√

3
√

2
√

7 = 2
√

21. Thus we get:

cos θ =
−3

2
√

21
= −1

2

√
3

7
.

(The last equality was obtained by cancelling a factor of
√

3 from the numerator and
denominator. There is no need to do this if it does not make the fraction ‘neater’, and
here I do not think it does.)

Note. The following is an example of totally unacceptable working when calculating a
dot product. 1

−1
−2

 ·

 3
−2
1

 =

 1× 3
(−1)× (−2)

(−2)× 1

 =

 3
2
−2

 = 3 + 2 + (−2) = 3.

This is because the first and third so-called equalities are nothing of the sort. The first
is trying to equate a scalar (LHS) with a vector (RHS), while the third tries to equate a
vector with a scalar. The above has TWO errors, and we shall simply mark such stuff
as being wrong.
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3.2 Properties of the scalar product

Let u,v 6= 0 and let θ be the angle between u and v. From the definition u·v =
|u||v| cos θ of the scalar product we observe that:

• if 0 6 θ < π
2

then u·v > 0;

• if θ = π
2

then u·v = 0; and

• if π
2

< θ 6 π then u·v < 0.

Moreover,

cos θ =
u·v
|u||v|

.

Now let u, v, w be any vectors. Then:

1. u·v = v·u;

2. u·(v + w) = (u·v) + (u·w);

3. (u + v)·w = (u·w) + (v·w);

4. u·(αv) = α(u·v) = (αu)·v for all scalars α;

5. u·(−v) = (−u)·v = −(u·v); and

6. (−u)·(−v) = u·v.

There is however no (non-vacuous) associative law for the dot product. This is because
neither of the quantities (u·v)·w and u·(v·w) is defined. (In both cases, we are trying
to form the dot product of a vector and a scalar in some order, and in neither order does
such a product exist.)

Each of the above equalities can be proved by using Theorem 3.2, which expresses
the dot product in terms of coördinates. To prove (1) we observe that:

u·v = u1v1 + u2v2 + u3v3 = v1u1 + v2u2 + v3u3 = v·u.

In order to prove the equality u·(αv) = α(u·v) of (4) we observe the following.

u·(αv) =

 u1

u2

u3

·

 αv1

αv2

αv3

 = u1(αv1) + u2(αv2) + u3(αv3)

= α(u1v1) + α(u2v2) + α(u3v3)
= α(u1v1 + u2v2 + u3v3) = α(u·v).

The proofs of the rest of these equalities are left as exercises.
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3.3 Equation of a plane

Let n be a vector and Π be a plane. We say that n is orthogonal to Π (or Π is orthogonal
to n) if for all points A, B on Π, we have that n is orthogonal to the vector represented

by
−→
AB. We also say that n is a normal (or normal vector) to Π, hence the notation n.
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Suppose that n 6= 0, A is a point, and we wish to determine an equation of the (unique)
plane Π that is orthogonal to n and contains A. Now a point R, with position vector r,

is on Π exactly when
−→
AR represents a vector orthogonal to n, that is when (r−a)·n = 0,

where a is the position vector of a. Equivalently, we have r·n− a·n = 0, which gives:

r·n = a·n,

a vector equation of the plane Π, where r is the position vector of an arbitary point on
Π, a is the position vector of a fixed point on Π, and n is a nonzero vector orthogonal
to Π. In coördinates, we let

r =

 x
y
z

 , n =

 n1

n2

n3

 and a =

 a1

a2

a3

 .

Then the point (x, y, z) is on Π exactly when: x
y
z

·

 n1

n2

n3

 =

 a1

a2

a3

·

 n1

n2

n3


that is, when

n1x + n2y + n3z = d,

where d = a1n1 + a2n2 + a3n3. This is a Cartesian equation of the plane Π.

Example. We find a Cartesian equation for the plane through A = (2,−1, 3) and or-

thogonal to n =

 −2
3
5

. A vector equation is

 x
y
z

·

 −2
3
5

 =

 2
−1
3

·

 −2
3
5

,

which gives rise to the Cartesian equation −2x + 3y + 5z = 8.
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Example. The equation 2x−y+3z = 6 specifies the plane Π orthogonal to n =

 2
−1
3


and containing the point (1,−1, 1). This is because we can write the equation as x

y
z

·

 2
−1
3

 =

 1
−1
1

·

 2
−1
3

 ,

which has the form r·n = a·n for suitable vectors r and a. The point (1, 2, 3) is not on
Π since 2× 1 + (−1)× 2 + 3× 3 = 2− 2 + 9 = 9 6= 6. The point (1, 2, 2) is on Π since
2× 1 + (−1)× 2 + 3× 2 = 2− 2 + 6 = 6.

Note that the coördinates of n can always be taken to be the coefficients of x, y, z
in the Cartesian equation. (It is valid to multiply such an n by any nonzero scalar, but
must ensure we do the corresponding operations to the right-hand sides of any equations
we use. Thus both 2x− y +3x = 6 and −4x+2y−6x = −12 are Cartesian equations of
the plane Π in the second example above.) Finding a point on Π is harder. A sensible
strategy is to set two of x, y, z to be zero (where the coefficient of the third is nonzero).
Here setting x = y = 0 gives 3z = 6, whence z = 2, so that (0, 0, 2) is on Π. Setting
x = z = 0 gives y = −6, so that (0,−6, 0) is on Π, and setting y = z = 0 gives x = 3,
so that (3, 0, 0) is on Π. (This sensible strategy does not find the point (1,−1, 1) that is
on Π.)

In the case of the plane Π′ with equation x + y = 1, setting x = z = 0 gives the
point (0, 1, 0) on Π′, while setting y = z = 0 gives the point (1, 0, 0) on Π′. But if we
set x = y = 0, we end up with the equation 0 = 1, which has no solutions for z, so we
do not find a point here.

Note. [Not lectured.] Another form of a vector equation for a plane, corresponding to
the vector equation for a line is as follows. Take any 3 points A, B, C on Π such that A,
B, C are not on the same line. Let A, B, C have position vectors a, b, c respectively.
Then a vector equation for Π is:

r = a + λ(b− a) + µ(c− a),

where λ and µ range (independently) over the whole of R.

3.4 The distance from a point to a plane

Let Π be the plane having equation ax + by + cz = d, so that Π is orthogonal to

n =

 a
b
c

 6= 0. Let Q be a point, and let M be the point on Π closest to Q.
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b
c
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Π

Let m, q be the position vectors of M , Q. Then the vector q−m represented by
−→
MQ

is orthogonal to Π, and so (since we are in just 3 dimensions) q−m is a scalar multiple
of n, that is q−m = λn for some scalar λ ∈ R. Therefore:

(q−m)·n = (λn)·n = λ(n·n) = λ|n|2,

and so q·n−m·n = λ|n|2. But m is on Π, which has equation r·n = d, and so m·n = d.
Therefore q·n− d = λ|n|2, and thus:

λ =
q·n− d

|n|2

But the distance from Q to Π (which is the distance from Q to M , where M is the

closest point on Π to Q) is in fact |
−→
MQ| = |λn| = |λ||n|, that is:∣∣∣∣q·n− d

|n|2

∣∣∣∣ |n| = |q·n− d|
|n|

.

If one looks at other sources one may see a superficially dissimilar formula for this
distance. To obtain this, we let P be any point on Π, and let p be the position vector
of p, so that p·n = d. Thus q·n− d = q·n− p·n = (q− p)·n. Therefore the distance
can also be expressed as:

|(q− p)·n|
|n|

=

∣∣∣∣(q− p)· n

|n|

∣∣∣∣ =

∣∣∣∣free(−→PQ)· n

|n|

∣∣∣∣ = |(q− p)·n̂|,

where free(
−→
PQ) = q−p is the (free) vector represented by

−→
PQ, and n̂ is the unit vector

in the direction of n.

Example. We find the distance of (3,−2, 4) from the plane defined by 2x+3y−5z = 7.

With our notation we have n =

 2
3
−5

, d = 7, q =

 3
−2
4

, and so the distance is

|q·n− d|
|n|

=
|(6− 6− 20)− 7|√

22 + 32 + (−5)2
=

27√
38

.
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3.5 The distance from a point to a line

Let ` be the line with (vector) equation r = p + λu, where u 6= 0, and let Q be a point
with position vector q. If Q = P (where P has position vector P ), then Q is on `, and
the distance between Q and ` is 0. Else we drop a normal from Q to ` meeting ` at the
point M .
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The distance from Q to ` is |
−→
MQ|, that is |q − m|, is easily seen from the diagram

to be |
−→
PQ| sin θ, where θ is the angle between q − p (the vector that

−→
PQ represents)

and the vector u (which is the direction [up to opposite] of the line `). [Pedants should
recall that u 6= 0, and also note that sin θ > 0, since 0 6 θ 6 π.] For now we content
ourselves with noting that this distance is |q − p| sin θ (which ‘morally’ applies even
when q = p). When we encounter the cross product, we shall be able to express this
distance as |(q−p)×u|/|u|. Note that sin θ can be calculated using dot products, since
cos θ can be so calculated, and we have sin θ =

√
1− cos2 θ. On calculating |q−p| sin θ,

we find that the distance from Q to ` is√
|q− p|2|u|2 − ((q− p)·u)2

|u|
,

a formula which applies even when q = p. In the case when |u| = 1 the above formula
simplifies to

√
|q− p|2 − ((q− p)·u)2.

Exercise. Use methods from Calculus I to minimise the distance from R to Q, where
R, the typical point on `, has position vector r with r = p + λu. Show that this
minimum agrees with the distance from Q to ` given above. Hint: The quantity |r− q|
is always at least 0. So |r − q| is minimal precisely when |r − q|2 is minimal. But
|r− q|2 = (r− q)·(r− q), and this is easier to deal with.
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