Chapter 3 The Scalar Product

The scalar product is a way of multiplying two vectors to produce a scalar (real number). Let **u** and **v** be nonzero vectors represented by \overrightarrow{AB} and \overrightarrow{AC} .

We define the angle between **u** and **v** to be the angle θ (in radians) between \overrightarrow{AB} and \overrightarrow{AC} , with $0 \leq \theta \leq \pi$. A handy chart for converting between degrees and radians is given below.

radians	0	$\frac{\pi}{180}$	$\frac{\pi}{12}$	$\frac{\pi}{10}$	$\frac{\pi}{6}$	$\frac{\pi}{5}$	$\frac{\pi}{4}$	1	$\frac{\pi}{3}$	$\frac{2\pi}{5}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	π	2π
degrees	0	1	15	18	30	36	45	$\frac{180}{\pi} \approx 57.3$	60	72	90	120	135	180	360

Definition 3.1. The scalar product (or dot product) of **u** and **v** is denoted $\mathbf{u} \cdot \mathbf{v}$, and is defined to be 0 if either $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$. If both $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$, we define $\mathbf{u} \cdot \mathbf{v}$ by

$$\mathbf{u} \cdot \mathbf{v} := |\mathbf{u}| |\mathbf{v}| \cos \theta,$$

where θ is the angle between **u** and **v**. (Note that I have had to specify what θ is in the definition itself; you **must** do the same.) We say that **u** and **v** are *orthogonal* if $\mathbf{u} \cdot \mathbf{v} = 0$.

Note that **u** and **v** are orthogonal if and only if $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$ or the angle between **u** and **v** is $\frac{\pi}{2}$. (This includes the case $\mathbf{u} = \mathbf{v} = \mathbf{0}$.)

Note. Despite the notation concealing this fact somewhat, the scalar product is a *function*. Its codomain (and range) is \mathbb{R} , and its domain is the set of ordered pairs of (free) vectors. As usual, we must make sure that the function is defined (in a unique manner) for *all* elements of the domain, and this includes those pairs having the zero vector in one or both positions.

3.1 The scalar product using coördinates

Theorem 3.2. Let $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$. Then $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$.

Proof. If $\mathbf{u} = \mathbf{0}$ (in which case $u_1 = u_2 = u_3 = 0$) or $\mathbf{v} = \mathbf{0}$ (in which case $v_1 = v_2 = v_3 = 0$) we have $\mathbf{u} \cdot \mathbf{v} = 0 = u_1 v_1 + u_2 v_2 + u_3 v_3$, as required.

Now suppose that $\mathbf{u}, \mathbf{v} \neq 0$, and let θ be the angle between \mathbf{u} and \mathbf{v} . We calculate $|\mathbf{u} + \mathbf{v}|^2$ in two different ways. Firstly we use coördinates.

$$|\mathbf{u} + \mathbf{v}|^{2} = \left| \begin{pmatrix} u_{1} + v_{1} \\ u_{2} + v_{2} \\ u_{3} + v_{3} \end{pmatrix} \right|^{2} = (u_{1} + v_{1})^{2} + (u_{2} + v_{2})^{2} + (u_{3} + v_{3})^{2}$$
$$= u_{1}^{2} + 2u_{1}v_{1} + v_{1}^{2} + u_{2}^{2} + 2u_{2}v_{2} + v_{2}^{2} + u_{3}^{2} + 2u_{3}v_{3} + v_{3}^{2}$$
$$= |\mathbf{u}|^{2} + |\mathbf{v}|^{2} + 2(u_{1}v_{1} + u_{2}v_{2} + u_{3}v_{3}),$$

that is:

$$|\mathbf{u} + \mathbf{v}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2 + 2(u_1v_1 + u_2v_2 + u_3v_3).$$
(3.1)

Our second way to do this is geometrical. Pick a point A, and consider the parallelogram \overrightarrow{ABCD} , where \overrightarrow{AB} represents \mathbf{u} and \overrightarrow{AD} represents \mathbf{v} . Thus \overrightarrow{BC} represents \mathbf{v} , and so \overrightarrow{AC} represents $\mathbf{u} + \mathbf{v}$ by the Triangle Rule. Drop a perpendicular from C to the line through A and B, meeting the said line at N, and let M be an arbitrary point on the line through A and B strictly to 'right' of B (i.e. when traversing the line through A and B in a certain direction we encounter the points in the order A, B, M). Let θ be the angle between \mathbf{u} and \mathbf{v} (i.e. θ is the size of angle BAD). A result from Euclidean geometry states that the angle MBC also has size θ . The following diagram has all this information.

(Note that this diagram is drawn with $0 < \theta < \frac{\pi}{2}$. If $\theta = \frac{\pi}{2}$ then N = B, and if $\theta > \frac{\pi}{2}$ then N lies to the 'left' of B, probably between A and B, but possibly even to the 'left' of A.) We have $|\overrightarrow{AN}| = |(|\mathbf{u}| + |\mathbf{v}| \cos \theta)|$, even when $\theta \ge \frac{\pi}{2}$, and even when N is to the 'left' of A. We also have that $|\overrightarrow{CN}| = |\mathbf{v}||\sin \theta|$. Applying Pythagoras (which is fine here even when $\theta \ge \frac{\pi}{2}$), and using the fact that $|a|^2 = a^2$ whenever $a \in \mathbb{R}$, we obtain:

$$\begin{aligned} |\mathbf{u} + \mathbf{v}|^2 &= |\vec{AC}|^2 = |\vec{AN}|^2 + |\vec{CN}|^2 = (|\mathbf{u}| + |\mathbf{v}|\cos\theta)^2 + (|\mathbf{v}|\sin\theta)^2 \\ &= |\mathbf{u}|^2 + 2|\mathbf{u}||\mathbf{v}|\cos\theta + |\mathbf{v}|^2(\cos\theta)^2 + |\mathbf{v}|^2(\sin\theta)^2 \\ &= |\mathbf{u}|^2 + |\mathbf{v}|^2(\cos^2\theta + \sin^2\theta) + 2\mathbf{u}\cdot\mathbf{v}. \end{aligned}$$

Here $\cos^2 \theta$ means $(\cos \theta)^2$ and $\sin^2 \theta$ means $(\sin \theta)^2$. Using the standard identity that $\cos^2 \theta + \sin^2 \theta = 1$ for all θ , we obtain:

$$|\mathbf{u} + \mathbf{v}|^2 = |\mathbf{u}|^2 + |\mathbf{v}|^2 + 2\mathbf{u} \cdot \mathbf{v}.$$
(3.2)

Comparing Equations 3.1 and 3.2 gives us the result.

Note that if
$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$
 then $\mathbf{u} \cdot \mathbf{u} = u_1^2 + u_2^2 + u_3^2 = |\mathbf{u}|^2$ (even when $\mathbf{u} = \mathbf{0}$)

Example. We determine $\cos \theta$, where θ is the angle between $\mathbf{u} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\begin{pmatrix} 1\\2\\-3 \end{pmatrix}$$
. We have $|\mathbf{u}| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{6}$ and $|\mathbf{v}| = \sqrt{1^2 + 2^2 + (-3)^2} = \sqrt{14}$, along with:

$$\mathbf{u} \cdot \mathbf{v} = 2 \times 1 + (-1) \times 2 + 1 \times (-3) = 2 - 2 - 3 = -3.$$

The formula $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$ gives $-3 = \sqrt{6}\sqrt{14} \cos \theta = 2\sqrt{21} \cos \theta$, the last step being since $\sqrt{6}\sqrt{14} = \sqrt{2}\sqrt{3}\sqrt{2}\sqrt{7} = 2\sqrt{21}$. Thus we get:

$$\cos \theta = \frac{-3}{2\sqrt{21}} = -\frac{1}{2}\sqrt{\frac{3}{7}}.$$

(The last equality was obtained by cancelling a factor of $\sqrt{3}$ from the numerator and denominator. There is no need to do this if it does not make the fraction 'neater', and here I do not think it does.)

Note. The following is an example of totally unacceptable working when calculating a dot product.

$$\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \times 3 \\ (-1) \times (-2) \\ (-2) \times 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} = 3 + 2 + (-2) = 3.$$

This is because the first and third so-called equalities are nothing of the sort. The first is trying to equate a scalar (LHS) with a vector (RHS), while the third tries to equate a vector with a scalar. The above has TWO errors, and we shall simply mark such stuff as being wrong.

3.2 Properties of the scalar product

Let $\mathbf{u}, \mathbf{v} \neq \mathbf{0}$ and let θ be the angle between \mathbf{u} and \mathbf{v} . From the definition $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$ of the scalar product we observe that:

- if $0 \leq \theta < \frac{\pi}{2}$ then $\mathbf{u} \cdot \mathbf{v} > 0$;
- if $\theta = \frac{\pi}{2}$ then $\mathbf{u} \cdot \mathbf{v} = 0$; and
- if $\frac{\pi}{2} < \theta \leq \pi$ then $\mathbf{u} \cdot \mathbf{v} < 0$.

Moreover,

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}.$$

Now let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be any vectors. Then:

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u};$
- 2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \cdot \mathbf{v}) + (\mathbf{u} \cdot \mathbf{w});$
- 3. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = (\mathbf{u} \cdot \mathbf{w}) + (\mathbf{v} \cdot \mathbf{w});$
- 4. $\mathbf{u} \cdot (\alpha \mathbf{v}) = \alpha (\mathbf{u} \cdot \mathbf{v}) = (\alpha \mathbf{u}) \cdot \mathbf{v}$ for all scalars α ;
- 5. $\mathbf{u} \cdot (-\mathbf{v}) = (-\mathbf{u}) \cdot \mathbf{v} = -(\mathbf{u} \cdot \mathbf{v});$ and

6.
$$(-\mathbf{u}) \cdot (-\mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$$
.

There is however no (non-vacuous) associative law for the dot product. This is because neither of the quantities $(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}$ and $\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w})$ is defined. (In both cases, we are trying to form the dot product of a vector and a scalar in some order, and in neither order does such a product exist.)

Each of the above equalities can be proved by using Theorem 3.2, which expresses the dot product in terms of coördinates. To prove (1) we observe that:

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 = v_1 u_1 + v_2 u_2 + v_3 u_3 = \mathbf{v} \cdot \mathbf{u}$$

In order to prove the equality $\mathbf{u} \cdot (\alpha \mathbf{v}) = \alpha(\mathbf{u} \cdot \mathbf{v})$ of (4) we observe the following.

$$\mathbf{u} \cdot (\alpha \mathbf{v}) = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \cdot \begin{pmatrix} \alpha v_1 \\ \alpha v_2 \\ \alpha v_3 \end{pmatrix} = u_1(\alpha v_1) + u_2(\alpha v_2) + u_3(\alpha v_3)$$
$$= \alpha(u_1 v_1) + \alpha(u_2 v_2) + \alpha(u_3 v_3)$$
$$= \alpha(u_1 v_1 + u_2 v_2 + u_3 v_3) = \alpha(\mathbf{u} \cdot \mathbf{v}).$$

The proofs of the rest of these equalities are left as exercises.

3.3 Equation of a plane

Let **n** be a vector and Π be a plane. We say that **n** is *orthogonal* to Π (or Π is orthogonal to **n**) if for all points A, B on Π , we have that **n** is orthogonal to the vector represented by \overrightarrow{AB} . We also say that **n** is a *normal* (or normal vector) to Π , hence the notation **n**.

Suppose that $\mathbf{n} \neq \mathbf{0}$, A is a point, and we wish to determine an equation of the (unique) plane Π that is orthogonal to \mathbf{n} and contains A. Now a point R, with position vector \mathbf{r} , is on Π exactly when \overrightarrow{AR} represents a vector orthogonal to \mathbf{n} , that is when $(\mathbf{r}-\mathbf{a})\cdot\mathbf{n}=0$, where \mathbf{a} is the position vector of \mathbf{a} . Equivalently, we have $\mathbf{r}\cdot\mathbf{n} - \mathbf{a}\cdot\mathbf{n} = 0$, which gives:

$$\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n},$$

a vector equation of the plane Π , where **r** is the position vector of an arbitrary point on Π , **a** is the position vector of a fixed point on Π , and **n** is a nonzero vector orthogonal to Π . In coördinates, we let

$$\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad \mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \text{ and } \mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}.$$

Then the point (x, y, z) is on Π exactly when:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}$$

that is, when

$$n_1x + n_2y + n_3z = d,$$

where $d = a_1n_1 + a_2n_2 + a_3n_3$. This is a *Cartesian equation* of the plane Π .

Example. We find a Cartesian equation for the plane through A = (2, -1, 3) and orthogonal to $\mathbf{n} = \begin{pmatrix} -2\\3\\5 \end{pmatrix}$. A vector equation is $\begin{pmatrix} x\\y\\z \end{pmatrix} \cdot \begin{pmatrix} -2\\3\\5 \end{pmatrix} = \begin{pmatrix} 2\\-1\\3 \end{pmatrix} \cdot \begin{pmatrix} -2\\3\\5 \end{pmatrix}$, which gives rise to the Cartesian equation -2x + 3y + 5z = 8.

Example. The equation 2x - y + 3z = 6 specifies the plane Π orthogonal to $\mathbf{n} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$

and containing the point (1, -1, 1). This is because we can write the equation as

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix},$$

which has the form $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$ for suitable vectors \mathbf{r} and \mathbf{a} . The point (1, 2, 3) is not on Π since $2 \times 1 + (-1) \times 2 + 3 \times 3 = 2 - 2 + 9 = 9 \neq 6$. The point (1, 2, 2) is on Π since $2 \times 1 + (-1) \times 2 + 3 \times 2 = 2 - 2 + 6 = 6$.

Note that the coördinates of **n** can always be taken to be the coefficients of x, y, zin the Cartesian equation. (It is valid to multiply such an **n** by any nonzero scalar, but must ensure we do the corresponding operations to the right-hand sides of any equations we use. Thus both 2x - y + 3x = 6 and -4x + 2y - 6x = -12 are Cartesian equations of the plane II in the second example above.) Finding a point on II is harder. A sensible strategy is to set two of x, y, z to be zero (where the coefficient of the third is nonzero). Here setting x = y = 0 gives 3z = 6, whence z = 2, so that (0, 0, 2) is on II. Setting x = z = 0 gives y = -6, so that (0, -6, 0) is on II, and setting y = z = 0 gives x = 3, so that (3, 0, 0) is on II. (This sensible strategy does not find the point (1, -1, 1) that is on II.)

In the case of the plane Π' with equation x + y = 1, setting x = z = 0 gives the point (0, 1, 0) on Π' , while setting y = z = 0 gives the point (1, 0, 0) on Π' . But if we set x = y = 0, we end up with the equation 0 = 1, which has no solutions for z, so we do not find a point here.

Note. [Not lectured.] Another form of a vector equation for a plane, corresponding to the vector equation for a line is as follows. Take any 3 points A, B, C on Π such that A, B, C are not on the same line. Let A, B, C have position vectors \mathbf{a} , \mathbf{b} , \mathbf{c} respectively. Then a vector equation for Π is:

$$\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) + \mu(\mathbf{c} - \mathbf{a}),$$

where λ and μ range (independently) over the whole of \mathbb{R} .

3.4 The distance from a point to a plane

Let Π be the plane having equation ax + by + cz = d, so that Π is orthogonal to $\mathbf{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \neq \mathbf{0}$. Let Q be a point, and let M be the point on Π closest to Q.

Let \mathbf{m} , \mathbf{q} be the position vectors of M, Q. Then the vector $\mathbf{q} - \mathbf{m}$ represented by \overrightarrow{MQ} is orthogonal to Π , and so (since we are in just 3 dimensions) $\mathbf{q} - \mathbf{m}$ is a scalar multiple of \mathbf{n} , that is $\mathbf{q} - \mathbf{m} = \lambda \mathbf{n}$ for some scalar $\lambda \in \mathbb{R}$. Therefore:

$$(\mathbf{q} - \mathbf{m}) \cdot \mathbf{n} = (\lambda \mathbf{n}) \cdot \mathbf{n} = \lambda (\mathbf{n} \cdot \mathbf{n}) = \lambda |\mathbf{n}|^2,$$

and so $\mathbf{q} \cdot \mathbf{n} - \mathbf{m} \cdot \mathbf{n} = \lambda |\mathbf{n}|^2$. But \mathbf{m} is on Π , which has equation $\mathbf{r} \cdot \mathbf{n} = d$, and so $\mathbf{m} \cdot \mathbf{n} = d$. Therefore $\mathbf{q} \cdot \mathbf{n} - d = \lambda |\mathbf{n}|^2$, and thus:

$$\lambda = \frac{\mathbf{q} \cdot \mathbf{n} - d}{|\mathbf{n}|^2}$$

But the distance from Q to Π (which is the distance from Q to M, where M is the closest point on Π to Q) is in fact $|\overrightarrow{MQ}| = |\lambda \mathbf{n}| = |\lambda||\mathbf{n}|$, that is:

$$\left|\frac{\mathbf{q}\cdot\mathbf{n}-d}{|\mathbf{n}|^2}\right||\mathbf{n}| = \frac{|\mathbf{q}\cdot\mathbf{n}-d|}{|\mathbf{n}|}.$$

If one looks at other sources one may see a superficially dissimilar formula for this distance. To obtain this, we let P be any point on Π , and let \mathbf{p} be the position vector of \mathbf{p} , so that $\mathbf{p} \cdot \mathbf{n} = d$. Thus $\mathbf{q} \cdot \mathbf{n} - d = \mathbf{q} \cdot \mathbf{n} - \mathbf{p} \cdot \mathbf{n} = (\mathbf{q} - \mathbf{p}) \cdot \mathbf{n}$. Therefore the distance can also be expressed as:

$$\frac{|(\mathbf{q} - \mathbf{p}) \cdot \mathbf{n}|}{|\mathbf{n}|} = \left| (\mathbf{q} - \mathbf{p}) \cdot \frac{\mathbf{n}}{|\mathbf{n}|} \right| = \left| \operatorname{free}(\overrightarrow{PQ}) \cdot \frac{\mathbf{n}}{|\mathbf{n}|} \right| = |(\mathbf{q} - \mathbf{p}) \cdot \hat{\mathbf{n}}|,$$

where free(\overrightarrow{PQ}) = $\mathbf{q} - \mathbf{p}$ is the (free) vector represented by \overrightarrow{PQ} , and $\hat{\mathbf{n}}$ is the unit vector in the direction of \mathbf{n} .

Example. We find the distance of
$$(3, -2, 4)$$
 from the plane defined by $2x + 3y - 5z = 7$.
With our notation we have $\mathbf{n} = \begin{pmatrix} 2\\ 3\\ -5 \end{pmatrix}$, $d = 7$, $\mathbf{q} = \begin{pmatrix} 3\\ -2\\ 4 \end{pmatrix}$, and so the distance is
$$\frac{|\mathbf{q} \cdot \mathbf{n} - d|}{|\mathbf{n}|} = \frac{|(6 - 6 - 20) - 7|}{\sqrt{2^2 + 3^2 + (-5)^2}} = \frac{27}{\sqrt{38}}.$$

3.5 The distance from a point to a line

Let ℓ be the line with (vector) equation $\mathbf{r} = \mathbf{p} + \lambda \mathbf{u}$, where $\mathbf{u} \neq \mathbf{0}$, and let Q be a point with position vector \mathbf{q} . If Q = P (where P has position vector P), then Q is on ℓ , and the distance between Q and ℓ is 0. Else we drop a normal from Q to ℓ meeting ℓ at the point M.

The distance from Q to ℓ is $|\vec{MQ}|$, that is $|\mathbf{q} - \mathbf{m}|$, is easily seen from the diagram to be $|\vec{PQ}|\sin\theta$, where θ is the angle between $\mathbf{q} - \mathbf{p}$ (the vector that \vec{PQ} represents) and the vector \mathbf{u} (which is the direction [up to opposite] of the line ℓ). [Pedants should recall that $\mathbf{u} \neq \mathbf{0}$, and also note that $\sin\theta \ge 0$, since $0 \le \theta \le \pi$.] For now we content ourselves with noting that this distance is $|\mathbf{q} - \mathbf{p}| \sin\theta$ (which 'morally' applies even when $\mathbf{q} = \mathbf{p}$). When we encounter the cross product, we shall be able to express this distance as $|(\mathbf{q} - \mathbf{p}) \times \mathbf{u}|/|\mathbf{u}|$. Note that $\sin\theta = \sqrt{1 - \cos^2\theta}$. On calculating $|\mathbf{q} - \mathbf{p}| \sin\theta$, we find that the distance from Q to ℓ is

$$\frac{\sqrt{|\mathbf{q}-\mathbf{p}|^2|\mathbf{u}|^2-((\mathbf{q}-\mathbf{p})\cdot\mathbf{u})^2}}{|\mathbf{u}|},$$

a formula which applies even when $\mathbf{q} = \mathbf{p}$. In the case when $|\mathbf{u}| = 1$ the above formula simplifies to $\sqrt{|\mathbf{q} - \mathbf{p}|^2 - ((\mathbf{q} - \mathbf{p}) \cdot \mathbf{u})^2}$.

Exercise. Use methods from Calculus I to minimise the distance from R to Q, where R, the typical point on ℓ , has position vector \mathbf{r} with $\mathbf{r} = \mathbf{p} + \lambda \mathbf{u}$. Show that this minimum agrees with the distance from Q to ℓ given above. Hint: The quantity $|\mathbf{r} - \mathbf{q}|$ is always at least 0. So $|\mathbf{r} - \mathbf{q}|$ is minimal precisely when $|\mathbf{r} - \mathbf{q}|^2$ is minimal. But $|\mathbf{r} - \mathbf{q}|^2 = (\mathbf{r} - \mathbf{q}) \cdot (\mathbf{r} - \mathbf{q})$, and this is easier to deal with.