Chapter 2

Cartesian Coordinates

The adjective Cartesian above refers to René Descartes (1596-1650), who was the first
to coordinatise the plane as ordered pairs of real numbers, which provided the first
systematic link between Euclidean geometry and algebra.

Choose an origin O in 3-space, and choose (three) mutually perpendicular axes
through O, which we shall label as the z-, y- and z-axes. The z-axis, y-axis and z-
axis form a right-handed system if they can be rotated to look like one of the following
(which can all to rotated to look like the others).
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A left-handed system can be rotated to look like the following.
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Swapping two axes or reversing the direction of one (or three) of the axes changes the
handedness of the system. It is possible to make the shape of a right-handed system
using our right-hand, with the thumb (pointing) along the z-axis, first [index] finger
along the y-axis, and second [middle| finger along the z-axis. You should curl the other
two fingers of your hand into you palm when you do this. (Unfortunately, it is possible,
though much harder, to make the shape of a left-handed system using your right hand,
but if you can make such a configuration it should be much more uncomfortable!) If
you use your left hand, you should end up with a left-handed system.

We let i, j and k denote vectors of length 1 in the directions of the x-, y- and z-axes
respectively.
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Let R be the point whose coérdinates are (a, b, ¢), and let r be the position vector of
R. Then r = ai + bj + ck. See the diagram below.
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Let q = ai + bj be the position vector of the point ). Then applying Pythagoras’s
Theorem to the right-angled triangle OP(Q) we get:

lal = 10Q] = \/I0P? + \PQI? = /ol + b = Va + .

0
(length |a|) ai a
P i Q
(length |b|)
We also have the right-angled triangle OQR.
R
r
ck (length |c|)
0 | Q

Applying Pythagoras’s Theorem to triangle OQR gives:

x| = |O—}§| = \/|O—@|2 + |Cﬁé|2 = \/|(1|2 +|c]2 = Va2 + b2 + 2.

To summarise: If R is a point having coordinates (a, b, ¢), then the position vector of
R is r = ai + bj + ck, which has length v/a? + b + 2.

a
Notation. We write [ b | for the vector ai + bj + ck.
c
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2.1 Sums and scalar multiples using coordinates

a d
Nowletu=| 0 |,v=| e | and let a be a scalar. Then, using the rules for vector
¢ S
addition and scalar multiplication (sometimes multiple times per line) we get:
a d
ut+v=|0b |+ | e | =(ai+bj+ck)+ (di+ej+ fk)
f
= (ai + di) + (bj + €j) + (ck + fk)
a+d
= (a+d)i+(b+e)j+(c+fk =| b+e |,
c+ f
along with
a
au=a| b | =alai+bj+ ck)
= a(ai) + a(bj) + a(ck)
aa
= (a)i+ (ab)j+ (ac)k = | ab |,
ac
and
a —a
—u=(—lu=(-1)[ b | =] —0b
c —c
2 3
Example. Let u= | —1 | and v = 5 |. Then
0 -1
2 3 6 —12 —6
Ju—4v=3u+(—-4)v=3|-1]+(-4| 5 |=-3]+|—-20]=1]-23
0 -1 0 4 4

2.2 Unit vectors

Definition 2.1. A unit vector is a vector of length 1.

For example, i, j and k are unit vectors. Let r be any nonzero vector, and define:

()
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Note that |r| > 0, so that & and hence t exist.) But we also have & > 0, and thus
Ir| Ir|
|t = \ﬁHr\ = ﬁ]r| =1, so that ¥ is the unit vector in the same direction as r. (There

is only one unit vector in the same direction as r.)

-1
Example. Let r = 5 |. Then |r| = \/(—1)2+ 52 + (—4)% = V/42. Therefore
—4

@ve()- (e
f=(—)r=—=| 5 | = 5/vV42
[ Va2 _y YN

If we want the unit vector in the opposite direction to r, this is simply —#&, and if we
want the vector of length 7 in the opposite direction to r, this is —7t.

2.3 Equations of lines

Let ¢ be the line through the point P in the direction of the nonzero vector u.

Now a point R is on the line ¢ if and only if PR represents a scil)ar multiple of u. Let p
and r be the position vectors of P and R respectively. Then PR represents r — p, and
so R is on / if and only if r — p = Au for some real number A; equivalently r = p 4+ Au
for some real number A\. We thus get the vector equation of the line ¢:

r=p-+Au (A € R),

where p and u are constants and r is a variable (depending on A) which denotes the
position of a general point on /.

T p1 U1
Moving to coordinates, weletr=| vy |, p=| p2 | andu= | wuy |. Then:
z p3 us
x D1 Uy p1+ Ay
y | =r=pt+Au=|p | +A| u | = p2+Aru |,
z D3 us3 p3 + Aus
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from which we get the parametric equations of the line £, namely:

T =P+ Aug
Y = p2 + Aug
Z = p3 + Aug

Assuming that uq, us, ug # 0, we may eliminate A to get:

rT—pP1  Y—pP2 Z—DP3

- - )

Uy U2 Uus

which are the Cartesian equations of the line ¢. (Each of these fractions is equal to \.)
The following should tell you how to get the Cartesian equations of ¢ when one or two
of the u; are zero (they cannot all be zero). If u; = 0 and us, ug # 0 then the Cartesian

equations are
Y= ps  Z—p3
xr =P, - )
U2 us

and if u; = uy = 0, uz # 0, the Cartesian equations are z = p;, y = ps (with no mention
of z anywhere).

Example. As an example, we determine the vector, parametric and Cartesian equations

—2
of the line ¢ through the point (3, —1,2) in the direction of the vector 1
4
The vector equation is:
3 —2
r=| -1 | +A 1
2 4
The parametric equations are:
r= 3—2\
y=—-14+2A
z= 24+4)

And the Cartesian equations are:

r—3 y+1 =z2-2
-2 1 4

Is the point (7, —3, —6) on £? Yes, since the vector equation is satisfied with A\ = —2 (this
value of A can be determined from the parametric equations). What about the point
(1,1,1)? No, because the Cartesian equations are not satisfied: 1 = % #* % = 2.
Alternatively, we can look at the parametric equations: the first would give A = 1, and
the second would give A = 2, an inconsistency.
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2.3.1 The line determined by two distinct points

Suppose we are given two points P and ) on a line ¢, with P # @, and we want to
determine (say) a vector equation for ¢. Suppose P has position vector p and @ has
position vector q.

p Q 0

@)

Then ¢ is a line through P in the direction of P_@, and thus in the direction of q — p
ﬂ
(the vector that PQ represents). Therefore, a vector equation for ¢ is:

r=p+Aq-p).

Parametric and Cartesian equations for ¢ can be derived from this vector equation in
the usual way.
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