
Chapter 2

Cartesian Coördinates

The adjective Cartesian above refers to René Descartes (1596–1650), who was the first
to coördinatise the plane as ordered pairs of real numbers, which provided the first
systematic link between Euclidean geometry and algebra.

Choose an origin O in 3-space, and choose (three) mutually perpendicular axes
through O, which we shall label as the x-, y- and z-axes. The x-axis, y-axis and z-
axis form a right-handed system if they can be rotated to look like one of the following
(which can all to rotated to look like the others).
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A left-handed system can be rotated to look like the following.
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Swapping two axes or reversing the direction of one (or three) of the axes changes the
handedness of the system. It is possible to make the shape of a right-handed system
using our right-hand, with the thumb (pointing) along the x-axis, first [index] finger
along the y-axis, and second [middle] finger along the z-axis. You should curl the other
two fingers of your hand into you palm when you do this. (Unfortunately, it is possible,
though much harder, to make the shape of a left-handed system using your right hand,
but if you can make such a configuration it should be much more uncomfortable!) If
you use your left hand, you should end up with a left-handed system.

We let i, j and k denote vectors of length 1 in the directions of the x-, y- and z-axes
respectively.
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Let R be the point whose coördinates are (a, b, c), and let r be the position vector of
R. Then r = ai + bj + ck. See the diagram below.
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Let q = ai + bj be the position vector of the point Q. Then applying Pythagoras’s
Theorem to the right-angled triangle OPQ we get:

|q| = |
−→
OQ| =

√
|
−→
OP |2 + |

−→
PQ|2 =

√
|a|2 + |b|2 =

√
a2 + b2.
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We also have the right-angled triangle OQR.
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Applying Pythagoras’s Theorem to triangle OQR gives:

|r| = |
−→
OR| =

√
|
−→
OQ|2 + |

−→
QR|2 =

√
|q|2 + |c|2 =

√
a2 + b2 + c2.

To summarise: If R is a point having coördinates (a, b, c), then the position vector of
R is r = ai + bj + ck, which has length

√
a2 + b2 + c2.

Notation. We write

 a
b
c

 for the vector ai + bj + ck.
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2.1 Sums and scalar multiples using coördinates

Now let u =

 a
b
c

, v =

 d
e
f

 and let α be a scalar. Then, using the rules for vector

addition and scalar multiplication (sometimes multiple times per line) we get:

u + v =

 a
b
c

 +

 d
e
f

 = (ai + bj + ck) + (di + ej + fk)

= (ai + di) + (bj + ej) + (ck + fk)

= (a + d)i + (b + e)j + (c + f)k =

 a + d
b + e
c + f

 ,

along with

αu = α

 a
b
c

 = α(ai + bj + ck)

= α(ai) + α(bj) + α(ck)

= (αa)i + (αb)j + (αc)k =

 αa
αb
αc

 ,

and

−u = (−1)u = (−1)

 a
b
c

 =

 −a
−b
−c

 .

Example. Let u =

 2
−1
0

 and v =

 3
5
−1

. Then

3u− 4v = 3u + (−4)v = 3

 2
−1
0

 + (−4)

 3
5
−1

 =

 6
−3
0

 +

−12
−20
4

 =

 −6
−23
4

 .

2.2 Unit vectors

Definition 2.1. A unit vector is a vector of length 1.

For example, i, j and k are unit vectors. Let r be any nonzero vector, and define:

r̂ :=

(
1

|r|

)
r.
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(Note that |r| > 0, so that 1
|r| and hence r̂ exist.) But we also have 1

|r| > 0, and thus

|̂r| = | 1
|r| ||r| =

1
|r| |r| = 1, so that r̂ is the unit vector in the same direction as r. (There

is only one unit vector in the same direction as r.)

Example. Let r =

 −1
5
−4

. Then |r| =
√

(−1)2 + 52 + (−4)2 =
√

42. Therefore

r̂ =

(
1

|r|

)
r =

1√
42

 −1
5
−4

 =

 −1/
√

42

5/
√

42

−4/
√

42

 .

If we want the unit vector in the opposite direction to r, this is simply −r̂, and if we
want the vector of length 7 in the opposite direction to r, this is −7r̂.

2.3 Equations of lines

Let ` be the line through the point P in the direction of the nonzero vector u.
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Now a point R is on the line ` if and only if
−→
PR represents a scalar multiple of u. Let p

and r be the position vectors of P and R respectively. Then
−→
PR represents r− p, and

so R is on ` if and only if r− p = λu for some real number λ; equivalently r = p + λu
for some real number λ. We thus get the vector equation of the line `:

r = p + λu (λ ∈ R),

where p and u are constants and r is a variable (depending on λ) which denotes the
position of a general point on `.

Moving to coördinates, we let r =

 x
y
z

, p =

 p1

p2

p3

 and u =

 u1

u2

u3

. Then:

 x
y
z

 = r = p + λu =

 p1

p2

p3

 + λ

 u1

u2

u3

 =

 p1 + λu1

p2 + λu2

p3 + λu3

 ,
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from which we get the parametric equations of the line `, namely:

x = p1 + λu1

y = p2 + λu2

z = p3 + λu3

 .

Assuming that u1, u2, u3 6= 0, we may eliminate λ to get:

x− p1

u1

=
y − p2

u2

=
z − p3

u3

,

which are the Cartesian equations of the line `. (Each of these fractions is equal to λ.)
The following should tell you how to get the Cartesian equations of ` when one or two
of the ui are zero (they cannot all be zero). If u1 = 0 and u2, u3 6= 0 then the Cartesian
equations are

x = p1,
y − p2

u2

=
z − p3

u3

,

and if u1 = u2 = 0, u3 6= 0, the Cartesian equations are x = p1, y = p2 (with no mention
of z anywhere).

Example. As an example, we determine the vector, parametric and Cartesian equations

of the line ` through the point (3,−1, 2) in the direction of the vector

 −2
1
4

.

The vector equation is:

r =

 3
−1
2

 + λ

 −2
1
4

 .

The parametric equations are:

x = 3− 2λ
y = −1 + λ
z = 2 + 4λ

 .

And the Cartesian equations are:

x− 3

−2
=

y + 1

1
=

z − 2

4
.

Is the point (7,−3,−6) on `? Yes, since the vector equation is satisfied with λ = −2 (this
value of λ can be determined from the parametric equations). What about the point
(1, 1, 1)? No, because the Cartesian equations are not satisfied: 1 = 1−3

−2
6= 1+1

1
= 2.

Alternatively, we can look at the parametric equations: the first would give λ = 1, and
the second would give λ = 2, an inconsistency.
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2.3.1 The line determined by two distinct points

Suppose we are given two points P and Q on a line `, with P 6= Q, and we want to
determine (say) a vector equation for `. Suppose P has position vector p and Q has
position vector q.
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Then ` is a line through P in the direction of
−→
PQ, and thus in the direction of q − p

(the vector that
−→
PQ represents). Therefore, a vector equation for ` is:

r = p + λ(q− p).

Parametric and Cartesian equations for ` can be derived from this vector equation in
the usual way.
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