
Chapter 1

Vectors

1.1 Introduction

The word geometry derives from the Ancient Greek word γεωµετρία, with a rough
meaning of geometry, land-survey, though I prefer earth measurement. There are two
elements in this word: γη̃ (or Γη̃), meaning Earth (among other related words), and
either µετρέω, to measure, to count, or µέτρον, a measure. Given this etymology, one
should have a fair idea of what geometry is about. (Consult the handouts on the web
for a copy of the Greek alphabet; the letter names should give a [very] rough guide to
the pronunciations of the letters themselves.)

In this module, we are interested in lines, planes, and other geometrical objects in
3-dimensional space (and maybe spaces of other dimensions).

We shall introduce standard notation for some number systems.

• N = {0, 1, 2, 3, . . .}, the natural numbers. I always include 0 as a natural number;
some people do not.

• Z = {. . . ,−2,−1, 0, 1, 2, . . .}, the integers. The notation comes from the German
Zahlen meaning numbers.

• N+ = Z+ = {1, 2, 3, . . .}, the positive integers, and N0 = Z>0 = {0, 1, 2, 3, . . .}, the
non-negative integers. The word positive here means strictly positive, that is to
say 0 is not considered to be a positive (or negative) number.

• Q = { a
b

: a, b are integers and b 6= 0 }. The Q is the first letter of quotient.

• R denotes the set of ‘real’ numbers. Examples of real numbers are 2, 3
5
,
√

7 and
π. Also, all decimal numbers, both terminating and not, are real numbers. In
fact, each real number can be represented in decimal form, though this decimal is
usually non-terminating and non-recurring. An actual definition of R is somewhat
technical, and is deferred (for a long time). The set R is a very artificial construct
and not very real at all.
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1.2 Vectors

A bound vector is a bounded (and directed) line segment
−→
AB in 3-dimensional [real]

space, which we shorten to 3-space and denote by R3, where A and B are points in this
space. (There is no particular reason, except familiarity, to restrict ourselves to 3-space,
and one often works in much higher dimensions, for example 196884-space.) We point
out that the real world around us probably bears little resemblence to R3, despite the
fact we are fondly imagining that it does.
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Note that a bound vector
−→
AB is determined by (and determines) three things:

(i) its length or magnitude, denoted |
−→
AB|,

(ii) its direction [provided A 6= B], and

(iii) its starting point, which is A.

If A = B, then
−→
AB =

−→
AA does not have a defined direction, and in this case

−→
AB is

determined by its length, which is 0, and its starting point A.
If we ignore the starting point, and only care about the length and direction, we

get the notion of a free vector (or simply vector in what follows). Thus
−→
AB and

−→
CD

represent the same free vector if and only if they have the same length and direction.
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We use u, v, w, . . . to denote free vectors (these would be underlined when hand-written:
thus u, v, w, . . .), and draw
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to mean that the free vector u is represented by
−→
AB; that is, the length and direction

of u are those of the bound vector
−→
AB. We denote the length of u by |u|.

Note. We should never write something like
−→
AB = u, tempting though it may be. The

reason is that two objects on each side of the equal sign are different types of object
(a bound vector versus a free vector), and it is always inappropriate to relate different
types of object using the equality sign.

Note. The module text uses u, v, w, . . . for (free) vectors; this is perfectly standard in
printed works. The previous lecturer used u, v, w, . . . (see the 2010 exam, for example),
which is decidedly non-standard in print. The book also uses AB for the free vector

represented by
−→
AB, which we shall never use. Better notations for the free vector

represented by
−→
AB are free(

−→
AB) or [

−→
AB], but we shall hardly ever use these either.1

Note. Each bound vector represents a unique free vector. Also, for each free vector u

and for each point A there is a unique point B such that
−→
AB represents u. This is a

consequence of a bound vector being determined by its length, direction and starting
point, and a free vector being determined by its length and direction only. Of course, a
suitable (and annoying) modification must be made to the above when the zero vector
(see below) is involved. We leave such a modification to the reader.

1.3 The zero vector

The zero vector is the (free) vector with zero length. Its direction is undefined. We

denote the zero vector by 0 (or 0 in handwriting). It is represented by
−→
AA, where A can

be any point. (It is also represented by
−→
DD, where D can be any point, and so on.)

1.4 Vector negation

If v is a nonzero vector, then the negative of v, denoted −v, is the vector with the same

length as v but opposite direction. We define −0 := 0. If
−→
AB represents v then

−→
BA

represents −v.

Note. Vector negation is a function from the set of free vectors to itself. It is therefore
essential that it be defined for every element in the domain. That is, we must define
the negative of every free vector. Note here the special treatment of the zero vector,
which is not covered by the first sentence.

1Usually, [
−→
AB] would denote the equivalence class containing

−→
AB. Here the relevant equivalence

relation is that two bound vectors are equivalent if and only if they represent the same free vector.
There is an obvious bijection between the set of these equivalence classes and the set of free vectors. See
the module MTH4110: Mathematical Structures for definitions of equivalence relation and equivalence
class.
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1.5 Parallelograms

Suppose A, B, C,D are any points in 3-space. We obtain the figure ABCD by joining
A to B (by a [straight] line segment), B to C, C to D, and finally D to A. For example:
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The figure ABCD is called a parallelogram if
−→
AB and

−→
DC represent the same vector.
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We note the following fact, which is really an axiom. We shall make some use of this
later.

Fact (Parallelogram Axiom). Note that
−→
AB and

−→
DC represent the same vector (u say)

if and only if
−→
AD and

−→
BC represent the same vector (v say). We can have u = v,

though more usually we will have u 6= v.

Note. We now see the folly of writing expressions like
−→
AD = v, where one side is a

bound vector, and one side is a free vector. For example, in the above parallelogram, we

would notice that
−→
AB = u =

−→
DC and deduce, using a well-known property of equality,

that
−→
AB =

−→
DC. But this is nonsense in the general case (when A 6= D), since the

vectors
−→
AB and

−→
DC have different starting points and are therefore not equal.

1.6 Vector addition

Now suppose that u and v are any vectors. Choose a point A. Further, assume that

points B and D are chosen so that
−→
AB represents u and

−→
AD represents v. (The points B

and D are unique.) We extend the A, B, D-configuration to a parallelogram by choosing

a point C (which is unique) such that
−→
DC represents u, as in the diagram below. (Note

that
−→
BC represents v by the Parallelogram Axiom.)
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The sum of u and v, which we denote as u + v, is defined to be the vector represented

by
−→
AC.
Note that I have defined vector addition only for free vectors, not for bound vectors,

so I do not wish to see you write things like
−→
AB +

−→
CD = · · · .

1.7 Some notation

In lectures, you will often see abbreviations for various mathematical concepts. Some of
these appear less often in printed texts. At least one of the symbols (∀) was introduced
around here. Most of these symbols can be negated.

• s.t. means ‘such that’.

• ∀ means ‘for all’.

• ∃ means ‘there exists’, while ∃! means ‘there exists unique’.

• @ means ‘there does not exist’.

• a ∈ B means that the element a is a member of the set B.

• a /∈ B means that the element a is not a member of the set B.

• A ⊆ B means that the set A is a subset of the set B (allows the case A = B).

1.8 Rules for vector addition

In the definition of u + v you will notice the use of an arbitrary point A. When one
encounters something like this, one is entitled to ask whether the definition depends on
the point A or not. Mathematicians, being pedants, very often will ask such seemingly
obvious questions. Temporarily, we shall use (u + v)A to denote the value of u + v
obtained if the arbitrary point A was used in its definition. (There is no need to worry
about the points B, C and D, since these are uniquely determined given u, v and A.)

We also take the opportunity in the following couple of pages to introduce terms such
as commutative, associative, identity, inverse and distributive. You should meet these
terms many times in your mathematical career. In the lectures we proved Theorems 1.2
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and 1.3 before Theorem 1.1. The box at the end of the proofs is the end-of-proof symbol.
One can write things like ‘QED’ (quod erat demonstrandum meaning ‘which was to be
shown’) instead.

Theorem 1.1. The definition of u + v does not depend on the point A used to define
it. In notation we have (u + v)A = (u + v)E for all vectors u and v and all points A
and E.

Proof. This proof involves three applications of the Paralellogram Axiom. Let ABCD
be the parallelogram obtained by using the Parallelogram Rule for vector addition to
calculate (u + v)A, and let EFGH be the parallelogram obtained by using the Parallel-

ogram Rule for vector addition to calculate (u + v)E. Thus
−→
AB,

−→
DC,

−→
EF and

−→
HG all

represent u, while
−→
AD and

−→
EH both represent v. Also

−→
AC represents (u+v)A and

−→
EG

represents (u + v)E. Finally, we define w to be the vector represented by
−→
AE. All this

information is in the diagram below.
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Firstly, we examine the quadrilateral AEHD, and because two sides,
−→
AD and

−→
EH

represent the same vector (namely v), we conclude that the other two sides
−→
AE and

−→
DH

represent the same vector, which is w. We now turn our attention to the quadrilateral

DHGC, and note that since
−→
DC and

−→
HG represent the same vector (namely u), then

so do
−→
DH and

−→
CG, this common vector being w. We have now shown that the sides−→

AE and
−→
CG of the quadrilateral AEGC represent w, and so applying the Parallelgram

Axiom for a third time, we see that
−→
AC and

−→
EG represent the same vector: that is, we

have now shown that (u + v)A = (u + v)E.

Theorem 1.2. For all vectors u and v we have u + v = v + u. This law is known as
the commutativity of vector addition, and we say that vector addition is commutative.
In fact, (u + v)A = (v + u)A for all vectors u and v and all points A.

Proof. The Parallelogram Rule for vector addition gives us the following parallelograms

ABCD and ABED in which
−→
AB and

−→
DC represent u;

−→
AD and

−→
BE represent v;

−→
AC

represents (u + v)A and
−→
AE represents (v + u)A (see the following diagram).
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By the Parallelogram Axiom,
−→
BC represents v, and by the uniqueness of a point X such

that
−→
BX represents v we have that C = E. So now both (u + v)A and (v + u)A are

represented by
−→
AC[=

−→
AE] and therefore (u + v)A = (v + u)A.

What is X? In maths, when one wants to refer to a quantity (so that we can describe
some property satisfied by that quantity), we usually have its name, which is typically a
letter of the alphabet, such as X or Y . It might be that there is no thing satisfying the
properties required by X. For example, there is no real number X such that X2 + 1 = 0.
Or X need not be unique; for example there are precisely 3 real numbers X such that
X3 + X2 − 2X − 1 = 0. [It does not matter what the actual values of X are, though in
this case I can express them in other terms—one possible value of X is 2 cos 2π

7
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The following gives an alternative way of defining vector addition, known as the
Triangle Rule.

Theorem 1.3 (Triangle Rule). Let A be a point, and let B and C be the unique points

such that
−→
AB represents u and

−→
BC represents v. Then

−→
AC represents u + v, or more

accurately (u + v)A. The following diagram illustrates the Triangle Rule.
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vu + v or (u+v)A

Proof. (For this proof the points A, B, C correspond to the points A, B, E (in that
order) in the right-hand parallelogram of the picture in the proof of Theorem 1.2.) By

the Parallelogram Rule we see that
−→
AC represents (v+u)A, and by the previous theorem,

we have (v + u)A = (u + v)A, hence the result.

Theorem 1.4. For all vectors u, v and w we have u + (v + w) = (u + v) + w. This
property is called associativity.

Proof. Pick a point A, and let B, C and D be the unique points such that
−→
AB represents

u,
−→
BC represents v, and

−→
CD represents w, see the diagram below.

7



�
�

�
�

�
��A

A
A
A
A
A
A
AA�

�
�
�
�
��

s

s

s

s
A

B

C

D
....................
..........
........

.
.......................................

.....................
...........
........

u
v

w

By the Triangle Rule applied to triangle BCD, we find that
−→
BD represents v+w, and so

by the Triangle Rule applied to triangle ABD we obtain that
−→
AD represents u+(v+w).

But the Triangle Rule applied to triangle ABC gives that
−→
AC represents u + v, and

applying the Triangle Rule to triangle ACD shows that
−→
AD represents (u + v) + w.

Since
−→
AD represents both u + (v + w) and (u + v) + w, we conclude that they are

equal.

Theorem 1.5. For all vectors u we have u + 0 = u. Thus u + 0 = 0 + u = u. This
asserts that 0 is an identity for vector addition.

Proof. Exercise (on exercise sheet).

1.9 Vector subtraction

Definition. For vectors u and v, we define u− v by u− v := u + (−v).

Theorem 1.6. For all vectors u we have u − u = 0. In other words, for each vector
u we have u + (−u) = 0, and thus u + (−u) = (−u) + u = 0 by Theorem 1.2. This
property means that −u is an additive inverse of u.

Proof. Let
−→
AB represent u. Then

−→
BA represents −u, and thus, by the Triangle Rule,−→

AA represents u + (−u). But
−→
AA (also) represents 0, and so u− u = u + (−u) = 0, as

required.

Theorem 1.7. Suppose
−→
AB represents u and

−→
AC represents v. Then

−→
BC represents

v − u.

Proof. A diagram for this is as follows.
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We have that
−→
BA represents −u, and so, by the Triangle Rule,

−→
BC represents (−u)+v.

But (−u) + v = v + (−u) by Theorem 1.2 (commutativity of vector addition), and
v + (−u) = v − u by definition.
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1.10 Scalar multiplication

We now define how to multiply a real number α (a scalar) by a vector v to obtain
another vector αv. We first specify that αv has length

|α||v|,

where |α| is the absolute value of α and |v| is the length of v. Thus if α = 0 or v = 0
then |αv| = |α||v| = 0, and so αv = 0. Otherwise (when α 6= 0 and v 6= 0), we have
that αv is nonzero, and we must specify the direction of αv. When α > 0, we specify
that αv has the same direction as v, and when α < 0, we specify that αv has the same
direction as −v (and hence the opposite direction to v).

Note. I have noticed that some students are writing vα instead of αv. It is ugly, and I
have not defined vα, so please do not use it. I may want to use that notation (vα) for
something completely different.

From this definition of scalar multiplication, we observe the following elementary
properties.

1. 0v = 0 for all vectors v,

2. α0 = 0 for all scalars α,

3. 1v = v for all vectors v,

4. (−1)v = −v for all vectors v.

Further properties of scalar multiplication are given below as theorems. These are all
harder to prove.

Theorem 1.8. For all vectors v and all scalars α, β, we have α(βv) = (αβ)v.

Proof. We have |α(βv)| = |α||βv| = |α|(|β||v|) = (|α||β|)|v| = (|αβ|)|v| = |(αβ)v|, and
so α(βv) and (αβ)v have the same length.

If α = 0, β = 0 or v = 0 then α(βv) = 0 = (αβ)v (easy exercise), so we now suppose
that α 6= 0, β 6= 0 and v 6= 0, and show that α(βv) and (αβ)v have the same direction.
The rest of the proof breaks into four cases, depending on the signs of α and β.

If α > 0, β > 0 then βv and (αβ)v both have the same direction as v, and α(βv)
has the same direction as βv, hence as v. So α(βv) = (αβ)v in this case. If α < 0,
β < 0 then αβ > 0 and both α(βv) and (αβ)v have the same direction as v, though
multiplying by either one of α or β reverses direction.

If α < 0, β > 0 or α > 0, β < 0 then α(βv) and (αβ)v both have the same direction
as −v (can you see why?). [This is an example of a hidden exercise in the text, and you
should still try to do it, even though it will not appear on any exercise sheet.]

So we have now shown that α(βv) and (αβ)v have the same direction in all cases,
completing the proof.

9



Theorem 1.9. For all vectors v and all scalars α, β, we have (α + β)v = αv + βv,
where the correct bracketing on the right-hand side is (αv) + (βv). This is an example
of a distributive law.

Proof. Exercise (not on the sheets). When evaluating αv + βv using the Parallelogram
Rule, you may assume that the four (not necessarily distinct) vertices of the parallelo-
gram all lie on a common (straight) line.

Theorem 1.10. For all vectors u, v and all scalars α, we have α(u+v) = αu+αv, where
the correct bracketing on the right-hand side is (αu) + (αv). This is also a distributive
law.

Proof. This will be at best a sketch of a proof. It will really be an argument convincing
you that the result is true using notions from Euclidean geometry. It is better to consider
this ‘theorem’ as an axiom. Our demonstration below will only cover the case α > 0,
and the diagram is drawn with α > 1.

Let
−→
AB represent u and

−→
BC represent v, so that

−→
AC represents u+v by the Triangle

Rule. Extending the lines AB and AC as necessary, we let D be the point on the line

AB such that
−→
AD represents αu, and let E be the point on the line AC such that

−→
AE

represents α(u + v).
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(case α > 1)

Then |
−→
AD| = α|

−→
AB| and |

−→
AE| = α|

−→
AC| and so triangles ABC and ADE are similar

(that is one is a scaling of the other; here this scaling fixes the point A). Therefore

|
−→
DE| = α|

−→
BC| and

−→
BC and

−→
DE have the same direction, and so

−→
DE represents αv.

Now we use the Triangle Rule with triangle ADE to conclude that αu+αv = α(u+v).
(Note that the notion of similarity in general allows translations, rotations and re-

flexions as well as scaling.)

Aside. In 2011, one student observed that Theorem 1.4 (among others) looked more like
an axiom than a theorem. It is quite possible to choose an alternative axiomatisation of
geometry in which several of the theorems here (including Theorem 1.4) are axioms. It
is also very likely that the Parallelogram Axiom would no longer be an axiom in such
an alternative system, but a theorem requiring proof.
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1.11 Position vectors

In order to talk about position vectors, we need to assume that we have fixed a point O
as an origin in 3-space. Then if A is any point, the position vector of A is defined to be

the free vector represented by the bound vector
−→
OA.

�
�

�
�

�
�
�

s

s

O

A

a
....................
..........
........

a is the position vector
of the point A

Note that each vector x is the position vector of exactly one point X in 3-space. This
point X has as distance and direction from the origin the length and direction of the
vector x.
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Theorem 1.11. Let A and B be points with position vectors a and b. Let P be a

point on the line segment AB such that |
−→
AP | = λ|

−→
AB|. Then P has position vector

p = (1− λ)a + λb.

Proof. A diagram for this situation is as follows.
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Let c be the vector represented by
−→
AB, and let q be the vector represented by

−→
AP .

Then q = λc. Now a + c = b (by the Triangle Rule), and adding −a to both sides we
obtain c = b− a. Therefore, using the Triangle Rule, we get p = a + q = a + λc, and
using the various rules for vector addition and scalar multiplication, we get:

p = a + λc = a + λ(b− a)
= a + λ(b + (−a))
= a + λb + λ(−a)
= a + λb + λ((−1)a)
= 1a + λb + (−λ)a
= (1− λ)a + λb,

as required.
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Example. Suppose P is one quarter of the way from A along the line segment AB.
Then p = (1− 1

4
)a + 1

4
b = 3

4
a + 1

4
b (see picture overleaf).
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Note. If A and B are any points, with position vectors a and b respectively, then the

vector represented by
−→
AB is b− a (see picture below).
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Theorem 1.12 (Application of Theorem 1.11). The diagonals of a parallelogram ABCD
meet each other in their midpoints.

Proof. This proof proceeds by determining the midpoints of the two diagonals and show-
ing they are the same. The diagram of what we wish to prove is given below.
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s

A B

CD

X[= Y ]

Let X be the midpoint of the diagonal AC, and let Y be the midpoint of the diagonal
BD. Let A, B, C, D, X, Y have position vectors a, b, c, d, x, y respectively. Then,
by Theorem 1.11, we have

x = (1− 1
2
)a + 1

2
c = 1

2
a + 1

2
c = 1

2
(a + c) and y = (1− 1

2
)b + 1

2
d = 1

2
(b + d).

Since ABCD is a parallelogram,
−→
AB and

−→
DC represent the same vector. Since

−→
AB

represents b−a and
−→
DC represents c−d, we have b−a = c−d. Adding a+d to both

sides (and using the rules of vector addition and subtraction) gives b+d = c+a[= a+c].
So now 1

2
(a + c) = 1

2
(b + d), which implies that x = y, whence X = Y .

12



In lectures, the symbol ⇒ often crops up, especially in proofs. It means ‘implies’ or
‘implies that.’ So A ⇒ B means ‘A implies B’ or ‘if A then B’ or ‘A only if B.’ The
symbol ⇐ means ‘is implied by,’ so that A ⇐ B means ‘A is implied by B’ or ‘A if B.’
The symbol ⇔ means ‘if and only if’ so that A ⇔ B means ‘A if and only if B’ or ‘A is
equivalent to B.’ Throughout the above, A and B are statements.
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