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Question 1 Let A = (1,2,3) and B = (2,−1,−1), and let a and b be the position
vectors of A and B respectively. Determine:

(a) the length of a; [2]

(b) the vector represented by −→AB; [2]

(c) parametric equations for the line through A and B; [3]

(d) the cosine of the angle between a and b; [3]

(e) the vector product a×b of a and b. [4]

Question 2

(a) By using Gaußian elimination to reduce to echelon form, followed by back
substitution, find all solutions to the following system of linear equations in
x, y, z defined over R:

4z = 8
x−2y+2z = 0

−2x+4y+5z = 18

 .

[8]

(b) What exactly does your answer to Part (a) tell you about the intersection of
the three planes defined by the equations above? [2]

Question 3 Calculate the distance from the point C = (1,−1,4) to the plane Π

defined by the equation 2x− y+3z = 4. [4]

Question 4 Let

A =

 3 0 0
0 7 −5
0 8 −6

 .

Find:

(a) det(A); [4]

(b) the characteristic polynomial of A; [4]

(c) all eigenvalues of A. [4]
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Question 5

(a) Define what it means to say, without using determinants, that an n×n matrix
A is invertible, and what is meant by the inverse of A. [4]

(b) Let

A =
(

2 4
2 3

)
.

Determine whether A is invertible and, if it is, find A−1. [4]

(c) Suppose that A and B are invertible n× n matrices. Prove that their product
AB is invertible, and show that (AB)−1 = B−1A−1. [4]

Question 6

(a) For each of the following linear transformations of R2, determine the 2× 2
matrix which represents it:

(i) the reflection in the line y =−x; [2]

(ii) the rotation about the origin through an (anticlockwise) angle of π/2; [2]

(iii) the transformation t obtained by first performing a reflection in the line
y =−x followed by a rotation about the origin through an (anticlock-
wise) angle of π/2. [3]

(b) Is the transformation t constructed in (a) (iii) above a reflection or a rotation?
If it is a reflection, find an equation for the line it fixes pointwise (the mirror);
if it is a rotation, find the angle through which it turns. [3]

Question 7 (a) Suppose vectors a and b in R3 satisfy the properties that a·u = 0
for all u ∈ R3 and b×v = 0 for all v ∈ R3. Prove that a = b = 0. [6]

(b) Consider the map t : R3 →R3 given by t(r) = r+k for r ∈R3, where i, j and
k form the standard right-handed triple of pairwise orthogonal unit vectors.

(i) Write down the map t when r and its image under t are written in terms
of coördinates. [2]

(ii) Is t a linear transformation? Justify your answer. [2]
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Question 8

(a) Define precisely, without using coördinates, the vector product u×v of vec-
tors u and v. [Take good care of the degenerate cases.] [5]

For the remainder of this question, standard results about the vector product may
be assumed without proof. Let KLMN be a parallelogram, and let the sides −→KL and−→KN represent the vectors a and b respectively, and let the diagonals −→KM and −→LN
represent the vectors c and d respectively.

(b) Write down the area A of KLMN in terms of a and b. [2]

(c) Write down c and d in terms of a and b. Thus write down a and b in terms of
c and d and express the area A in terms of c and d. [6]

(d) Write b in terms of a and c, and thus express the area A in terms of a and c. [3]

Question 9

(a) Define what is meant by an eigenvector of an n× n matrix A, and the eigen-
value corresponding to that eigenvector. [4]

(b) Suppose that u and v are eigenvectors of A with the same eigenvalue λ , and
that u+v 6= 0. Show that u+v is an eigenvector of A. [4]

(c) Suppose that u is an eigenvector of A and that B is an n× n matrix with
AB = BA and Bu 6= 0. Show that Bu is also an eigenvector of A. [4]

End of Paper
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