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Question 1 Let A =(—3,—1,2) and B = (1,—-2,3). Determine:
(a) the length of the position vector of A;
(b) the vector represented by AB;
(¢) a vector equation for the line through A and B;
)

(d) the distance of the point A from the plane with Cartesian equation
3 — 2y + 2z = 4.

Question 2

(a) Use Gaussian elimination to reduce the following system of linear equations in
x,y, z to echelon form. [You are not required to solve this system of equations.]

-r — 2y — =z = 3
-r — y — 2z = 2 .
dd - y - z = =2

(b) Apply back substitution to determine all solutions of the following system (in
echelon form) of linear equations in z,y, z.

—2r — 3y — 2z = 3
- 2z = 4

Question 3 Let ABCD be a parallelogram, with A = (0,—1,2), B = (1,2,3) and
C = (1,1,-1). Determine:

(a) the area of ABCD;

(b) a Cartesian equation for the plane through A, B and C.

1 -1 2
Question 4 Let A = | -3 0 1|, B = -6 =3 and C = L3 .
4 1 2 -1
-2 2 2
Determine each of the following:
(a) det(A);
(b) A%
B -2C + 3]2;

d) whether B is invertible, and if so, B~!;

)
()
(d)

)

(e) all the eigenvalues of B.
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Question 5

(a) Define precisely, not using co-ordinates, what is meant by the vector product
u X v of vectors u and v. [4]

(b) Apply your definition in part (a) to prove, without using co-ordinates, that
u X (aw) = a(u x v) for all vectors u,v and all scalars . [10]

Question 6 Let Sy denote the 2 x 2 matrix representing a reflection (in the (z,y)-
plane) in the line through the origin at counterclockwise angle 6 (in radians) from
the z-axis.

(a) Write down the matrix Sp, with its entries given explicitly in terms of 6. 4]
(b) Prove that Sy is invertible, and that (Sg)~! = Sy. 4]

(c) Suppose that A and B are n x n matrices such that A2 = B? = (AB)? = I,,.
Prove that AB = BA. 6]

Question 7 Suppose that n = 2 or 3 and that A is an n X n matrix.

(a) Define what is meant by an eigenvector v of A, and what is meant by the
eigenvalue of A corresponding to v. 4]

(b) Define what is meant by the characteristic polynomial of A. 4]

(c¢) Prove that if A is an eigenvalue of A and f(x) is the characteristic polynomial
of A then f(A) = 0. [You may assume, without proof, that if B is an n x n
matrix and zero is an eigenvalue of B then det(B) = 0.] 8]

End of Paper
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