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Question 1 Let A = (4,—1,2). Determine:

(a) parametric equations for the line through the point A and in the direction of

2
the vector | 1 |; 4]
—2
(b) a Cartesian equation for the plane through the point A and orthogonal to the
1
vector [ 3 |; 4]
-2
(c) the vector of length 2 in the same direction as the position vector of A. 4]
-1 2
Question 2 Consider the vectors u = 2 and v = | —2 |. Determine:
3 1
(a) the cosine of the angle between u and v; [4]
(b) the area of a parallelogram ABC D, such that AB represents u and AD repre-
sents v; [4]
(c) the volume of a parallelepiped with sides corresponding to u, —v, 3u. 4]
Question 3 Use Gaussian elimination to echelon form, followed by back substitu-
tion, to determine all solutions of the following system of linear equations in z, y, z:
y — z = 2
r + 2y + =z = 1.
2 + 3y + 3z = 0
[10]
1 1 0 4 3
Question 4 Let A = 3 0 1 and B = <1 2). Determine each of the
-1 2 -2
following;:
(a) —A+ 2[3; [4]
(b) A% [4]
(c) the characteristic polynomial of B; [4]
(d) all the eigenvectors of B with corresponding eigenvalue 5. 4]
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Question 5 For each of the following linear transformations, determine the 2 x 2
matrix representing that transformation (you should simplify the matrix entries as
much as possible):

(a) the reflection in the (z,y)-plane in the line through the origin at counterclock-
wise angle 7/4 from the z-axis; 4]

(b) the rotation in the (z,y)-plane, about the origin, through a counterclockwise
angle of 37/2. 4]

Question 6 (a) Define precisely, not using co-ordinates, what is meant by the
scalar product u - v of vectors u and v. [4]

(b) Suppose now that u and v are non-zero vectors. Define precisely what it means
to say that u is parallel to v. 4]

(¢) Prove that if u and v are non-zero vectors and u is not parallel to v then

- o] < |ufv].

8]

Question 7 (a) Define precisely what it means for a function ¢ : R™ — R™ to be
a linear transformation. [4]

(b) Apply your definition in part (a) to prove, without using matrices, that if
t:R™ — R™ is a linear transformation then ¢(0,) = Op,. 4]

(¢c) Now consider the function f : R™ — R™ defined by f(u) = 0,, for all u € R™.
Prove that f is a linear transformation. 4]

Question 8 (a) Define precisely, not using determinants, what it means for
an n X n matrix A to be invertible. 4]

(b) Suppose that A is an invertible n x n matrix having —1 as one of its eigenvalues.
Prove that A~! also has —1 as one of its eigenvalues. [10]
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