

B.Sc. Examination by Course Unit

MAS114 Geometry I

9 May 2008, 10:00–12:00

The duration of this examination is 2 hours. You should attempt all questions. Marks awarded are shown next to the questions. Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Do NOT start reading the question paper until instructed to do so by the invigilator.

[©]Queen Mary, University of London 2008

1. Let
$$\underline{u} = \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix}$$
, $\underline{v} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, and $\underline{w} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$. Calculate the following:

- (i) [2 marks] $|\underline{u}|$;
- (ii) [2 marks] the vector of length 1 having the same direction as \underline{u} ;
- (iii) [2 marks] $(\underline{u} \cdot \underline{v})\underline{w}$;
- (iv) [2 marks] $\underline{v} \times \underline{w}$;
- (v) [4 marks] the volume of a parallelepiped with sides corresponding to $\underline{u}, \underline{v}, \underline{w}$.
- **2.** Let A = (1, 2, 3) and B = (2, 5, 7). Determine:
- (i) [2 marks] the vector represented by \overrightarrow{AB} ;
- (ii) [4 marks] Cartesian equations for the line through the points A and B;
- (iii) [6 marks] a Cartesian equation for the plane through the points A, B, and (-1, 1, 3).

3. (i) [6 marks] Determine all solutions of the following system of linear equations in x, y, z:

$$\begin{cases} x + 2y + z = 2\\ 3x + 5y + 2z = 6\\ -2x - 2y + z = 1 \end{cases}$$

(ii) [2 marks] What exactly does your answer to part (i) tell you about the intersection of the three planes defined by the equations above?

4. [6 marks] Calculate the distance from the point (-1, 2, 3) to the line defined by the vector equation

$$\underline{r} = \begin{pmatrix} -1\\2\\1 \end{pmatrix} + \lambda \begin{pmatrix} 3\\1\\2 \end{pmatrix}.$$

Next question overleaf

- 5. Let $A = \begin{pmatrix} 2 & -1 \\ 4 & -3 \end{pmatrix}$. Determine:
- (i) $[2 \text{ marks}] 2A 3I_2;$
- (ii) [2 marks] A^2 ;
- (iii) $[2 \text{ marks}] \det(A);$
- (iv) [2 marks] whether A is invertible, and if so, A^{-1} ;
- (v) [2 marks] the characteristic polynomial of A;
- (vi) [2 marks] all the eigenvalues of A.

6. (i) [4 marks] Define what it means for a function $t : \mathbb{R}^n \to \mathbb{R}^m$ to be a *linear trans*formation.

(ii) [6 marks] For each of the following linear transformations of \mathbb{R}^2 , determine the 2 × 2 matrix representing that transformation:

- (a) a reflection in the x-axis;
- (b) a rotation about the origin through a counterclockwise angle of $\pi/2$;

(c) the transformation made by performing a reflection in the x-axis followed by a rotation about the origin through a counterclockwise angle of $\pi/2$.

7. [4 marks] For each of the following statements, say whether it is true or false. Your answer must be correct in all cases to obtain marks.

- (i) $\det(A + B) = \det(A) + \det(B)$ for all 3×3 matrices A and B.
- (ii) $det(\alpha A) = \alpha det(A)$, for all scalars α and all 3×3 matrices A.
- (iii) det(-A) = -det(A), for all 3×3 matrices A.
- (iv) If A is an invertible 2×2 matrix, then we must have $\det(A) \neq \det(A^{-1})$.

Next question overleaf

8. (i) [5 marks] Define precisely, not using co-ordinates, the *vector product* $\underline{u} \times \underline{v}$ of vectors \underline{u} and \underline{v} .

(ii) [9 marks] Apply your definition in part (i) to prove, without using co-ordinates, that

$$\underline{v} \times \underline{u} = -(\underline{u} \times \underline{v}).$$

9. [9 marks] Let $A = (a_{ij})_{m \times n}$, $X = (x_{ij})_{n \times p}$, and let α be a scalar. Prove that

$$(\alpha A)X = \alpha(AX).$$

10. (i) [4 marks] Define what is meant by an *eigenvalue* of an $n \times n$ matrix A.

(ii) [9 marks] Let A be an $n \times n$ matrix (with n > 0) and let λ be a scalar, such that, for each row of A, the sum of the entries in that row is equal to λ .

Prove that λ is an eigenvalue of A.

End of question paper