B.Sc. Examination by Course Unit

MAS114 Geometry I

9 May 2008, 10:00-12:00

The duration of this examination is 2 hours.
You should attempt all questions. Marks awarded are shown next to the questions.
Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Do NOT start reading the question paper until instructed to do so by the invigilator.

[^0]1. Let $\underline{u}=\left(\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right), \underline{v}=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$, and $\underline{w}=\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$. Calculate the following:
(i) $[2$ marks $]|\underline{u}|$;
(ii) [2 marks] the vector of length 1 having the same direction as \underline{u};
(iii) $[2$ marks] $(\underline{u} \cdot \underline{v}) \underline{w}$;
(iv) $[2$ marks $] \underline{v} \times \underline{w}$;
(v) [4 marks] the volume of a parallelepiped with sides corresponding to $\underline{u}, \underline{v}, \underline{w}$.
2. Let $A=(1,2,3)$ and $B=(2,5,7)$. Determine:
(i) [2 marks] the vector represented by $\overrightarrow{A B}$;
(ii) [4 marks] Cartesian equations for the line through the points A and B;
(iii) [6 marks] a Cartesian equation for the plane through the points A, B, and $(-1,1,3)$.
3. (i) [6 marks] Determine all solutions of the following system of linear equations in x, y, z :

$$
\left\{\begin{array}{c}
x+2 y+z=2 \\
3 x+5 y+2 z=6 \\
-2 x-2 y+z=1
\end{array}\right.
$$

(ii) [2 marks] What exactly does your answer to part (i) tell you about the intersection of the three planes defined by the equations above?
4. [6 marks] Calculate the distance from the point $(-1,2,3)$ to the line defined by the vector equation

$$
\underline{r}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right)+\lambda\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right)
$$

5. Let $A=\left(\begin{array}{ll}2 & -1 \\ 4 & -3\end{array}\right)$. Determine:
(i) $[2$ marks $] 2 A-3 I_{2}$;
(ii) $[2$ marks $] A^{2}$;
(iii) [2 marks] $\operatorname{det}(A)$;
(iv) [2 marks] whether A is invertible, and if so, A^{-1};
(v) [2 marks] the characteristic polynomial of A;
(vi) [2 marks] all the eigenvalues of A.
6. (i) [4 marks] Define what it means for a function $t: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to be a linear transformation.
(ii) [6 marks] For each of the following linear transformations of \mathbb{R}^{2}, determine the 2×2 matrix representing that transformation:
(a) a reflection in the x-axis;
(b) a rotation about the origin through a counterclockwise angle of $\pi / 2$;
(c) the transformation made by performing a reflection in the x-axis followed by a rotation about the origin through a counterclockwise angle of $\pi / 2$.
7. [4 marks] For each of the following statements, say whether it is true or false. Your answer must be correct in all cases to obtain marks.
(i) $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$ for all 3×3 matrices A and B.
(ii) $\operatorname{det}(\alpha A)=\alpha \operatorname{det}(A)$, for all scalars α and all 3×3 matrices A.
(iii) $\operatorname{det}(-A)=-\operatorname{det}(A)$, for all 3×3 matrices A.
(iv) If A is an invertible 2×2 matrix, then we must have $\operatorname{det}(A) \neq \operatorname{det}\left(A^{-1}\right)$.
8. (i) [5 marks] Define precisely, not using co-ordinates, the vector product $\underline{u} \times \underline{v}$ of vectors \underline{u} and \underline{v}.
(ii) [9 marks] Apply your definition in part (i) to prove, without using co-ordinates, that

$$
\underline{v} \times \underline{u}=-(\underline{u} \times \underline{v}) .
$$

9. [9 marks] Let $A=\left(a_{i j}\right)_{m \times n}, X=\left(x_{i j}\right)_{n \times p}$, and let α be a scalar. Prove that

$$
(\alpha A) X=\alpha(A X)
$$

10. (i) [4 marks] Define what is meant by an eigenvalue of an $n \times n$ matrix A.
(ii) [9 marks] Let A be an $n \times n$ matrix (with $n>0$) and let λ be a scalar, such that, for each row of A, the sum of the entries in that row is equal to λ.

Prove that λ is an eigenvalue of A.

[^0]: © Queen Mary, University of London 2008

