Queen Mary, University of London B.Sc. Examination

MAS114 Geometry I

17 May 2007, 14:30–16:30

The duration of this examination is 2 hours. You should attempt all questions. Marks awarded are shown next to the questions. Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Do NOT start reading the question paper until instructed to do so by the invigilator.

[©]QMUL, University of London 2007

1. Let
$$\underline{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 and $\underline{v} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$. Calculate the following:

(i) $[2 \text{ marks}] 2\underline{u} - 3\underline{v};$

(ii) [2 marks] a vector of length 1 in the same direction as \underline{u} ;

(iii) [2 marks] a vector equation for the line through (1, 3, -4) and in the same direction as \underline{u} .

2. Let
$$\underline{u} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
 and $\underline{v} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$. Calculate the following:

(i) $[2 \text{ marks}] \underline{u} \times \underline{v};$

(ii) [2 marks] a non-zero vector \underline{w} such that \underline{w} is orthogonal to both \underline{u} and \underline{v} , and $\underline{u}, \underline{v}, \underline{w}$ is a left-handed triple;

(iii) [3 marks] a Cartesian equation for the plane through the point (-1, 4, 5) and parallel to \underline{u} and \underline{v} ;

(iv) [4 marks] the distance of the point (1, 2, 3) from the plane defined by x + 2y - 4z = 5.

3. (i) [6 marks] By reducing to echelon form, determine all solutions to the following system of linear equations in x, y, z:

$$\begin{cases} 2x + 2y + 2z = 0\\ 2y + 4z = 0\\ x + 2y + 3z = 0 \end{cases}$$

(ii) [2 marks] What exactly does your answer to (i) tell you about the intersection of the three planes defined by the equations above?

4. (i) [4 marks] Calculate det(A), where $A = \begin{pmatrix} -1 & 1 & -2 \\ 2 & 2 & 3 \\ 1 & -2 & 3 \end{pmatrix}$.

(ii) [4 marks] Find the volume of the parallelepiped with sides corresponding to $\underline{u}, \underline{v}, \underline{w}$, where $\underline{u} = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \underline{v} = \begin{pmatrix} 3 \\ -6 \\ -3 \end{pmatrix}, \underline{w} = \begin{pmatrix} -2 \\ 3 \\ 3 \end{pmatrix}$.

Are $\underline{u}, \underline{v}, \underline{w}$ coplanar? If $\underline{u}, \underline{v}, \underline{w}$ are not coplanar then are they a right-handed triple or a left-handed triple? Justify your answers.

Next question overleaf

5. [6 marks] Consider the parallelogram ABCD, with A = (1, 2, 1), B = (1, -1, 3), and C = (2, 1, 0). Determine the area of ABCD.

6. For the matrix $A = \begin{pmatrix} -1 & 1 \\ 3 & 1 \end{pmatrix}$, do the following:

(i) [2 marks] calculate $A^2 + 3I_2$;

(ii) [3 marks] determine if A is invertible, and if so, find A^{-1} ;

(iii) [2 marks] determine the characteristic polynomial of A;

(iv) [5 marks] find all the eigenvalues of A, and for each such eigenvalue λ , find the set of all eigenvectors of A with corresponding eigenvalue λ .

7. (i) [2 marks] Define what it means for a function $t : \mathbb{R}^n \to \mathbb{R}^m$ to be a *linear transformation*.

(ii) [4 marks] Let
$$s : \mathbb{R}^2 \to \mathbb{R}^3$$
 be a linear transformation with $s \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}, s \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix},$
and let $t : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation with $t \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}, t \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, t \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$

Determine the matrices representing $s, t, and s \circ t$.

8. (i) [2 marks] With respect to a fixed origin O in 3-dimensional space, what is meant by the *position vector* \underline{a} of a point A?

(ii) [6 marks] Let A and B be points with respective position vectors \underline{a} and \underline{b} , and let P be a point on the line segment AB such that $|\overrightarrow{AP}| = \lambda |\overrightarrow{AB}|$. Prove that P has position vector

$$p = (1 - \lambda)\underline{a} + \lambda\underline{b}.$$

(iii) [6 marks] Let A, B, C, D be any four points in 3-dimensional space, and let P, Q, R, S be the respective mid-points of the line segments AB, BC, CD, DA. Prove that PQRS is a parallelogram.

Next question overleaf

9. (i) [3 marks] Define (not using co-ordinates) the scalar product $\underline{u} \cdot \underline{v}$ of two vectors \underline{u} and \underline{v} .

(ii) [8 marks] Suppose vectors $\underline{u}, \underline{v}$ are given in coordinates by $\underline{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}, \ \underline{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$.

(a) State a formula (without proof) for $\underline{u} \cdot \underline{v}$ in terms of the co-ordinates of \underline{u} and \underline{v} .

(b) Assuming the formula in (a), prove that $\underline{u} \cdot (\alpha \underline{v} + \underline{w}) = \alpha(\underline{u} \cdot \underline{v}) + \underline{u} \cdot \underline{w}$, for all vectors $\underline{u}, \underline{v}, \underline{w}$ and scalars α .

(iii) [4 marks] Exactly which of the following statements are true? [Your answer must be completely correct to obtain marks.]

(a) If \underline{u} and \underline{v} are vectors such that $\underline{u} \cdot \underline{v} = 0$, then we must have $\underline{u} = \underline{0}$ or $\underline{v} = \underline{0}$.

(b) If \underline{u} is a vector such that $\underline{u} \cdot \underline{v} = 0$ for every vector \underline{v} , then we must have $\underline{u} = \underline{0}$.

(c) $\underline{u} \cdot \underline{v} = \underline{v} \cdot \underline{u}$ for all vectors $\underline{u}, \underline{v}$.

(d) If \underline{u} and \underline{v} are non-zero vectors such that $|\underline{u} \cdot \underline{v}| = |\underline{u} \times \underline{v}|$ then \underline{u} and \underline{v} must be parallel.

(e) If \underline{u} and \underline{v} are non-zero vectors such that $|\underline{u} \cdot \underline{v}| = |\underline{u} \times \underline{v}|$ then \underline{u} and \underline{v} must be orthogonal.

10. (i) [2 marks] Write down the 2×2 matrix representing the rotation r_{θ} in the (x, y)-plane through a counterclockwise angle θ about the origin.

(ii) [6 marks] Prove that if θ is not an integer multiple of π , then r_{θ} has no (real) eigenvalue.

(iii) [6 marks] Write down the 3×3 matrix representing the reflection (in 3 dimensions) in the plane Π which goes through the origin and is orthogonal to $\begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}$.

 $End \ of \ question \ paper$