Queen Mary, University of London

B.Sc. Examination

MAS114 Geometry I

17 May 2007, 14:30-16:30

The duration of this examination is 2 hours.
You should attempt all questions. Marks awarded are shown next to the questions.
Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Do NOT start reading the question paper until instructed to do so by the invigilator.
© QMUL, University of London 2007

1. Let $\underline{u}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\underline{v}=\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$. Calculate the following:
(i) $[2$ marks] $2 \underline{u}-3 \underline{v}$;
(ii) [2 marks] a vector of length 1 in the same direction as \underline{u};
(iii) [2 marks] a vector equation for the line through $(1,3,-4)$ and in the same direction as \underline{u}.
2. Let $\underline{u}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ and $\underline{v}=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$. Calculate the following:
(i) $[2$ marks $] \underline{u} \times \underline{v}$;
(ii) [2 marks] a non-zero vector \underline{w} such that \underline{w} is orthogonal to both \underline{u} and \underline{v}, and $\underline{u}, \underline{v}, \underline{w}$ is a left-handed triple;
(iii) [3 marks] a Cartesian equation for the plane through the point $(-1,4,5)$ and parallel to \underline{u} and \underline{v};
(iv) [4 marks] the distance of the point $(1,2,3)$ from the plane defined by $x+2 y-4 z=5$.
3. (i) [6 marks] By reducing to echelon form, determine all solutions to the following system of linear equations in x, y, z :

$$
\left\{\begin{aligned}
2 x+2 y+2 z & =0 \\
2 y+4 z & =0 \\
x+2 y+3 z & =0
\end{aligned}\right.
$$

(ii) [2 marks] What exactly does your answer to (i) tell you about the intersection of the three planes defined by the equations above?
4. (i) [4 marks] Calculate $\operatorname{det}(A)$, where $A=\left(\begin{array}{ccc}-1 & 1 & -2 \\ 2 & 2 & 3 \\ 1 & -2 & 3\end{array}\right)$.
(ii) [4 marks] Find the volume of the parallelepiped with sides corresponding to $\underline{u}, \underline{v}, \underline{w}$, where $\underline{u}=\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right), \underline{v}=\left(\begin{array}{c}3 \\ -6 \\ -3\end{array}\right), \underline{w}=\left(\begin{array}{c}-2 \\ 3 \\ 3\end{array}\right)$.
Are $\underline{u}, \underline{v}, \underline{w}$ coplanar? If $\underline{u}, \underline{v}, \underline{w}$ are not coplanar then are they a right-handed triple or a left-handed triple? Justify your answers.
5. [6 marks] Consider the parallelogram $A B C D$, with $A=(1,2,1), B=(1,-1,3)$, and $C=(2,1,0)$. Determine the area of $A B C D$.
6. For the matrix $A=\left(\begin{array}{cc}-1 & 1 \\ 3 & 1\end{array}\right)$, do the following:
(i) [2 marks] calculate $A^{2}+3 I_{2}$;
(ii) [3 marks] determine if A is invertible, and if so, find A^{-1};
(iii) [2 marks] determine the characteristic polynomial of A;
(iv) [5 marks] find all the eigenvalues of A, and for each such eigenvalue λ, find the set of all eigenvectors of A with corresponding eigenvalue λ.
7. (i) [2 marks] Define what it means for a function $t: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to be a linear transformation.
(ii) [4 marks] Let $s: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation with
$s\binom{1}{0}=\left(\begin{array}{l}1 \\ 0 \\ 4\end{array}\right), s\binom{0}{1}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$,
and let $t: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation with
$t\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\binom{-3}{4}, t\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\binom{1}{2}, t\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\binom{1}{1}$.
Determine the matrices representing s, t, and $s \circ t$.
8. (i) [2 marks] With respect to a fixed origin O in 3 -dimensional space, what is meant by the position vector \underline{a} of a point A ?
(ii) [6 marks] Let A and B be points with respective position vectors \underline{a} and \underline{b}, and let P be a point on the line segment $A B$ such that $|\overrightarrow{A P}|=\lambda|\overrightarrow{A B}|$. Prove that P has position vector

$$
\underline{p}=(1-\lambda) \underline{a}+\lambda \underline{b} .
$$

(iii) [6 marks] Let A, B, C, D be any four points in 3-dimensional space, and let P, Q, R, S be the respective mid-points of the line segments $A B, B C, C D, D A$. Prove that $P Q R S$ is a parallelogram.
9. (i) [3 marks] Define (not using co-ordinates) the scalar product $\underline{u} \cdot \underline{v}$ of two vectors \underline{u} and \underline{v}.
(ii) [8 marks] Suppose vectors $\underline{u}, \underline{v}$ are given in coordinates by $\underline{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right), \underline{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$.
(a) State a formula (without proof) for $\underline{u} \cdot \underline{v}$ in terms of the co-ordinates of \underline{u} and \underline{v}.
(b) Assuming the formula in (a), prove that $\underline{u} \cdot(\alpha \underline{v}+\underline{w})=\alpha(\underline{u} \cdot \underline{v})+\underline{u} \cdot \underline{w}$, for all vectors $\underline{u}, \underline{v}, \underline{w}$ and scalars α.
(iii) [4 marks] Exactly which of the following statements are true? [Your answer must be completely correct to obtain marks.]
(a) If \underline{u} and \underline{v} are vectors such that $\underline{u} \cdot \underline{v}=0$, then we must have $\underline{u}=\underline{0}$ or $\underline{v}=\underline{0}$.
(b) If \underline{u} is a vector such that $\underline{u} \cdot \underline{v}=0$ for every vector \underline{v}, then we must have $\underline{u}=\underline{0}$.
(c) $\underline{u} \cdot \underline{v}=\underline{v} \cdot \underline{u}$ for all vectors $\underline{u}, \underline{v}$.
(d) If \underline{u} and \underline{v} are non-zero vectors such that $|\underline{u} \cdot \underline{v}|=|\underline{u} \times \underline{v}|$ then \underline{u} and \underline{v} must be parallel.
(e) If \underline{u} and \underline{v} are non-zero vectors such that $|\underline{u} \cdot \underline{v}|=|\underline{u} \times \underline{v}|$ then \underline{u} and \underline{v} must be orthogonal.
10. (i) [2 marks] Write down the 2×2 matrix representing the rotation r_{θ} in the (x, y)-plane through a counterclockwise angle θ about the origin.
(ii) [6 marks] Prove that if θ is not an integer multiple of π, then r_{θ} has no (real) eigenvalue.
(iii) [6 marks] Write down the 3×3 matrix representing the reflection (in 3 dimensions) in the plane Π which goes through the origin and is orthogonal to $\left(\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right)$.

