MTH4103 (2013–14) Geometry I

Solutions 10

26th March 2014

Practice Question 1. This definition is in the Week 12 lecture notes. Let t be a linear transformation of \mathbb{R}^n represented by the $n \times n$ matrix A.

We call $\mathbf{v} \in \mathbb{R}^n$ an *eigenvector* of t (and of A) if $\mathbf{v} \neq \mathbf{0}_n$ and $t(\mathbf{v}) = A\mathbf{v} = \lambda \mathbf{v}$ for some scalar λ , in which case λ is called the *eigenvalue* of t (and of A) corresponding to \mathbf{v} .

Practice Question 2. Note that the zero vector should never be included as an eigenvector.

(a) Let $A = \begin{pmatrix} 1 & -1 \\ 3 & 5 \end{pmatrix}$. The characteristic polynomial of A is det $(A - xI_2) = \begin{pmatrix} 1 - x & -1 \\ 3 & 5 - x \end{pmatrix} = (1 - x)(5 - x) - (-3) = x^2 - 6x + 8 = (x - 2)(x - 4)$. Thus the eigenvalues of A are 2 and 4.

To determine the eigenvectors with corresponding eigenvalue 2, we solve

$$(A - 2I_2)\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
, that is $\begin{pmatrix} -1 & -1\\ 3 & 3 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$.

This is equivalent to the single equation -x - y = 0 (the other equation is 3x + 3y = 0, which is a scalar multiple of this one). Thus x can be any real number, r say, and then y = -r. (Using Gaußian elimination strictly we would set y = t, where t can be any real number, and conclude that x = -t.) Thus, the set of all eigenvectors with corresponding eigenvalue 2 is

$$\left\{ \left. \begin{pmatrix} r \\ -r \end{pmatrix} : r \in \mathbb{R} \ \middle| \ r \neq 0 \right\}.$$

To determine the eigenvectors with corresponding eigenvalue 4, we solve

$$(A - 4I_2)\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
, that is $\begin{pmatrix} -3 & -1\\ 3 & 1 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$.

This is equivalent to the single equation -3x - y = 0 (the other equation is 3x + y = 0, which is a scalar multiple of this one). Thus x can be any real number, r say, and then y = -3r. (Using Gaußian elimination strictly we would set y = t, where t can be any real number, and conclude that x = -t/3.) Thus, the set of all eigenvectors with corresponding eigenvalue 4 is

$$\left\{ \left. \begin{pmatrix} r \\ -3r \end{pmatrix} : r \in \mathbb{R} \ \middle| \ r \neq 0 \right\}.$$

(b) Let $A = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$. The characteristic polynomial of A is det $(A - xI_2) = \begin{pmatrix} 4 - x & 0 \\ 0 & 4 - x \end{vmatrix} = (4 - x)^2 = (x - 4)^2$. Thus the only eigenvalue of A is 4.

To determine the eigenvectors with corresponding eigenvalue 4, we solve

$$(A - 4I_2)\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}, \text{ that is } \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$

and observe that **all** $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ are solutions.

[Alternatively, observe that $A\mathbf{v} = 4\mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^2$.]

Thus, the set of all eigenvectors with corresponding eigenvalue 4 consists of all the elements of \mathbb{R}^2 except for the zero vector, that is, $\mathbb{R}^2 \setminus \{\mathbf{0}_2\}$, or equivalently

$$\left\{ \mathbf{v} \in \mathbb{R}^2 \mid \mathbf{v} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}.$$

(c) Let $A = \begin{pmatrix} -2 & -1 \\ 1 & -4 \end{pmatrix}$. The characteristic polynomial of A is det $(A - xI_2) = \begin{vmatrix} -2 - x & -1 \\ 1 & -4 - x \end{vmatrix} = (-2 - x)(-4 - x) - (-1) = x^2 + 6x + 9 = (x + 3)^2$. Thus the only eigenvalue of A is -3.

To determine the eigenvectors with corresponding eigenvalue -3, we solve

$$(A+3I_2)\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$$
, that is $\begin{pmatrix} 1 & -1\\ 1 & -1 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}$.

This is equivalent to the single equation x - y = 0 (both equations are identical here). Thus y can be any real number, r say, and then x = r. Thus, the set of all eigenvectors with corresponding eigenvalue -3 is

$$\left\{ \left(\begin{array}{c} r \\ r \end{array} \right) : r \in \mathbb{R} \ \middle| \ r \neq 0 \right\}.$$

Note that in this part and the previous one, we obtained a repeated eigenvalue. In the previous part, ignoring the zero vector, we obtained a 2-space of corresponding eigenvectors, while in this part (which shows more typical behaviour) we only obtain a 1-space of corresponding eigenvectors (ignoring the zero vector).

Practice Question 3. Let $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 1 & 2 & 4 \end{pmatrix}$.

(a) The characteristic polynomial of A is

$$det(A - xI_3) = \begin{vmatrix} 1 - x & 2 & 0 \\ 2 & 1 - x & 0 \\ 1 & 2 & 4 - x \end{vmatrix}$$
$$= (1 - x)(1 - x)(4 - x) - 2(2(4 - x)) + 0$$
$$= (4 - x)((1 - x)^2 - 4) = (4 - x)(x^2 - 2x - 3)$$
$$= -(x - 4)(x - 3)(x + 1).$$

Thus the eigenvalues of A are -1, 3 and 4.

(b) To determine an eigenvector with corresponding eigenvalue -1, we solve

$$(A + I_3) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ that is } \begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 1 & 2 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

which is equivalent to the following system of linear equations:

$$\begin{array}{l} 2x + 2y &= 0\\ 2x + 2y &= 0\\ x + 2y + 5z = 0 \end{array} \right\}.$$

This system is equivalent to

$$\begin{array}{ccc} 2x + 2y &= 0 \\ 0 = 0 \\ y + 5z = 0 \end{array} \right\},$$

which (discarding the degenerate equation 0 = 0) is equivalent to

$$\begin{array}{c} 2x + 2y &= 0\\ y + 5z = 0 \end{array} \right\},$$

which is a system of non-degenerate linear equations in echelon form.

Now z is the only non-leading variable, and so to obtain one solution with x, y, z not all equal to zero, we may take z = 1, and then we have y = -5z = -5, and 2x - 10 = 0, so x = 5.

Thus
$$\begin{pmatrix} 5\\ -5\\ 1 \end{pmatrix}$$
 is an eigenvector, with corresponding eigenvalue -1 .

[Any nonzero scalar multiple of the above vector is also correct.]

(c) From Part (b), we see that such an ℓ is the line through the origin and (5, -5, 1), and so ℓ has vector equation $\mathbf{r} = \mu \begin{pmatrix} 5 \\ -5 \\ 1 \end{pmatrix}$.

[Of course it is acceptable for the parameter to be called λ instead of μ , although now we are mostly using λ to denote an eigenvalue.]

Practice Question 4. We have $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \lambda\mathbf{u} + \lambda\mathbf{v} = \lambda(\mathbf{u} + \mathbf{v})$, where the equality $A\mathbf{u} + A\mathbf{v} = \lambda\mathbf{u} + \lambda\mathbf{v}$ follows from the fact that \mathbf{u} and \mathbf{v} are eigenvectors of A, both with corresponding eigenvalue λ .

Thus, if $\mathbf{u} + \mathbf{v} \neq \mathbf{0}_n$, then $\mathbf{u} + \mathbf{v}$ is an eigenvector of A with corresponding eigenvalue λ . (And if $\mathbf{u} + \mathbf{v} = \mathbf{0}_n$ then $\mathbf{u} + \mathbf{v}$ is *not* an eigenvector of A, by definition.)

Practice Question 5. [My intention when setting this question was that S_{θ} corresponds to a reflexion in a line through O at (anticlockwise) angle $\theta/2$ to the (positive) x-axis, as per my preferred convention. But in lectures this year you had S_{θ} corresponding to a reflexion in a line through O at angle θ to the x-axis. This has no effect on the answer Part (c), and only a minimal effect on Part (b). It does, however, have some effect on Part (a).]

(a) We have

$$A = S_{\theta}S_0 = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} = R_{2\theta},$$

and so A represents the rotation through angle 2θ . Now

$$B = S_{\pi}S_{\theta} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix}$$
$$= \begin{pmatrix} \cos(-2\theta) & -\sin(-2\theta) \\ \sin(-2\theta) & \cos(-2\theta) \end{pmatrix} = R_{-2\theta},$$

and so B represents the rotation through angle -2θ .

It is especially unfortunate that $S_{\pi} = S_0$ under the convention in force. It was my intention that S_{π} be the reflexion in the *y*-axis (the equivalent of $S_{\pi/2}$ from lectures), whereas S_0 is the reflexion in the *x*-axis. So let us answer the question as it was intended. We have

$$A = S_{\theta}S_0 = \begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} = R_{\theta},$$

and so A represents the rotation through angle θ . Now

$$B = S_{\pi}S_{\theta} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} = \begin{pmatrix} -\cos\theta & -\sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\pi - \theta) & -\sin(\pi - \theta) \\ \sin(\pi - \theta) & \cos(\pi - \theta) \end{pmatrix} = R_{\pi - \theta},$$

and so B represents the rotation through angle $\pi - \theta$.

(b) We can prove this by showing that $S_{\theta}S_{\theta} = I_2$, as follows:

$$S_{\theta}S_{\theta} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$$
$$= \begin{pmatrix} (\cos 2\theta)^2 + (\sin 2\theta)^2 & 0 \\ 0 & (\sin 2\theta)^2 + (\cos 2\theta)^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2.$$

Alternatively, we can apply the formula for the inverse of a 2×2 matrix. We have det $S_{\theta} = -1$, and so

$$(S_{\theta})^{-1} = -\begin{pmatrix} -\cos 2\theta & -\sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} = S_{\theta}$$

[With my preferred convention for S_{θ} , the above proofs would be essentially the same. The only difference is that every occurence of 2θ in a matrix would get replaced by θ ; thus $\cos 2\theta$ becomes $\cos \theta$, and so on.]

(c) [There are (at least) two ways of doing this. Both these ways use Part (b) that shows that a reflexion is its own inverse. The first proof also uses the fact (proved in the Week 8 lecture notes) that if A and B are invertible $n \times n$ matrices then $(AB)^{-1} = B^{-1}A^{-1}$. The second proof checks directly that the required properties to be an inverse hold.]

First proof: We have

$$(S_{\theta_1}S_{\theta_2}S_{\theta_3})^{-1} = (S_{\theta_3})^{-1}(S_{\theta_1}S_{\theta_2})^{-1} = (S_{\theta_3})^{-1}(S_{\theta_2})^{-1}(S_{\theta_1})^{-1} = S_{\theta_3}S_{\theta_2}S_{\theta_1}.$$

Second proof: We have

$$(S_{\theta_1}S_{\theta_2}S_{\theta_3})(S_{\theta_3}S_{\theta_2}S_{\theta_1}) = S_{\theta_1}S_{\theta_2}S_{\theta_3}(S_{\theta_3})^{-1}(S_{\theta_2})^{-1}(S_{\theta_1})^{-1} = S_{\theta_1}S_{\theta_2}I_2(S_{\theta_2})^{-1}(S_{\theta_1})^{-1} = S_{\theta_1}S_{\theta_2}(S_{\theta_2})^{-1}(S_{\theta_1})^{-1} = S_{\theta_1}I_2(S_{\theta_1})^{-1} = S_{\theta_1}(S_{\theta_1})^{-1} = I_2,$$

and

$$(S_{\theta_3}S_{\theta_2}S_{\theta_1})(S_{\theta_1}S_{\theta_2}S_{\theta_3}) = S_{\theta_3}S_{\theta_2}S_{\theta_1}(S_{\theta_1})^{-1}(S_{\theta_2})^{-1}(S_{\theta_3})^{-1} = S_{\theta_3}S_{\theta_2}I_2(S_{\theta_2})^{-1}(S_{\theta_3})^{-1} = S_{\theta_3}S_{\theta_2}(S_{\theta_2})^{-1}(S_{\theta_3})^{-1} = S_{\theta_3}I_2(S_{\theta_3})^{-1} = S_{\theta_3}(S_{\theta_3})^{-1} = I_2.$$

Practice Question 6. This topic was not lectured this year, but does (or will) appear in Chapter 10 of the online notes. From the lecture notes, rotations through θ about the x-axis and z-axis have matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

respectively. So $R_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ and $R_2 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
(a) We have $R_3 = R_2 R_1 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

(b) det
$$(R_3 - I_3) = \begin{vmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{vmatrix} = (-1)(-1) - 1(-1) = 0$$
 (or to show this

determinant is 0, add the last two columns to the first column and so change the first column to $\mathbf{0}_3$). Hence 1 is an eigenvalue.

A corresponding eigenvector is obtained from any nonzero solution of the system of equations:

$$\begin{array}{c} -x + 0y + z = 0 \\ x - y + 0z = 0 \\ 0x + y - z = 0 \end{array} \right\}.$$

So an eigenvector of R_3 corresponding to the eigenvalue 1 is $\mathbf{u}_1 := \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ (or any nonzero scalar multiple of this).

(c) Since
$$R_3 \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
, the direction of the axis of rotation of R_3 is $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$.

(d) We have

$$(R_3)^3 = \left(\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \right) \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3.$$

Hence applying the rotation R_3 three times gives the identity. So if R_3 is a rotation through angle θ we deduce that $3\theta = 2\pi k$ for some integer k. (Angles are only defined up to adding integer multiples of 2π .) Since R_3 itself is not the identity, we deduce that R_3 is a rotation through $\pm 2\pi/3$ (modulo integer multiples of 2π).

(Looking from (1, 1, 1) towards O = (0, 0, 0), this rotation is through an anticlockwise angle of $2\pi/3$.)

(e) Let
$$R_4 = R_1 R_2 = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$
. Then $\det(R_4 - I_3) = \begin{vmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \\ 1 & 0 & -1 \end{vmatrix} = (-1)(+1) + 1(+1) = 0$, so $+1$ is an eigenvalue, and an eigenvector corresponding to this eigenvalue 1 is $\mathbf{u}_2 := \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ (or any nonzero scalar multiple of this). Thus $R_4 = R_1 R_2$ has an axis of rotation different from that for $R_1 R_2$. But a direct coloulation of $(R_1)^3$ above that $(R_2)^3 = \mathbf{I}_1 \neq R_2$.

for R_2R_1 . But a direct calculation of $(R_4)^3$ shows that $(R_4)^3 = I_3 \neq R_4$, so R_4 is still a rotation through $\pm 2\pi/3$. (Looking from (1, -1, 1) towards O = (0, 0, 0), this rotation is through an anticlockwise angle of $2\pi/3$.)

Let $A = (a_{ij})_{n \times n}$ and $B = (b_{ij})_{n \times n}$ be square matrices. The *trace* of A, denoted tr A, is the sum of the (top-left to bottom-right) diagonal entries of A. Thus tr $A := \sum_{i=1}^{n} a_{ii}$. (We do not care about the top-right to bottom-left 'diagonal'.) The *order* of A, denoted o(A), is the least integer $m \ge 1$ such that $A^m = 1$. If no such m exists, then A has infinite order, and we write $o(A) = \infty$. In the above both R_1 and R_2 have order 4, while both R_1R_2 and R_2R_1 have order 3.

We have seen that $AB \neq BA$ in general. Nonetheless, certain properties are shared by AB and BA, including determinant, trace, characteristic polynomial, order, and set of eigenvalues, though the corresponding eigenvectors are in general different.

For example, R_1R_2 and R_2R_1 both have determinant 1, trace 0, order 3, characteristic polynomial $1 - x^3$, and eigenvalue set $\{1, \frac{1}{2}(-1 + i\sqrt{3}), \frac{1}{2}(-1 - i\sqrt{3})\}$, where $i^2 = -1$. However, the eigenvectors of R_1R_2 and R_2R_1 corresponding to the eigenvalue 1 differ, and cannot be made the same by scaling. In fact, \mathbf{u}_1 is not an eigenvector of R_1R_2 for any eigenvalue, and \mathbf{u}_2 is not an eigenvector of R_2R_1 for any eigenvalue

Dr John N. Bray, 26th March 2014