MTH4103 (2013-14)

 Geometry I
Solutions 10

$26^{\text {th }}$ March 2014

Practice Question 1. This definition is in the Week 12 lecture notes. Let t be a linear transformation of \mathbb{R}^{n} represented by the $n \times n$ matrix A.
We call $\mathbf{v} \in \mathbb{R}^{n}$ an eigenvector of t (and of A) if $\mathbf{v} \neq \mathbf{0}_{n}$ and $t(\mathbf{v})=A \mathbf{v}=$ $\lambda \mathbf{v}$ for some scalar λ, in which case λ is called the eigenvalue of t (and of A) corresponding to \mathbf{v}.

Practice Question 2. Note that the zero vector should never be included as an eigenvector.
(a) Let $A=\left(\begin{array}{rr}1 & -1 \\ 3 & 5\end{array}\right)$. The characteristic polynomial of A is $\operatorname{det}\left(A-x \mathrm{I}_{2}\right)=$ $\left|\begin{array}{cc}1-x & -1 \\ 3 & 5-x\end{array}\right|=(1-x)(5-x)-(-3)=x^{2}-6 x+8=(x-2)(x-4)$. Thus the eigenvalues of A are 2 and 4 .
To determine the eigenvectors with corresponding eigenvalue 2 , we solve

$$
\left(A-2 \mathrm{I}_{2}\right)\binom{x}{y}=\binom{0}{0}, \quad \text { that is } \quad\left(\begin{array}{rr}
-1 & -1 \\
3 & 3
\end{array}\right)\binom{x}{y}=\binom{0}{0} .
$$

This is equivalent to the single equation $-x-y=0$ (the other equation is $3 x+3 y=0$, which is a scalar multiple of this one). Thus x can be any real number, r say, and then $y=-r$. (Using Gaußian elimination strictly we would set $y=t$, where t can be any real number, and conclude that $x=-t$.) Thus, the set of all eigenvectors with corresponding eigenvalue 2 is

$$
\left\{\binom{r}{-r}: r \in \mathbb{R} \mid r \neq 0\right\} .
$$

To determine the eigenvectors with corresponding eigenvalue 4, we solve

$$
\left(A-4 \mathrm{I}_{2}\right)\binom{x}{y}=\binom{0}{0}, \quad \text { that is } \quad\left(\begin{array}{rr}
-3 & -1 \\
3 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{0} .
$$

This is equivalent to the single equation $-3 x-y=0$ (the other equation is $3 x+y=0$, which is a scalar multiple of this one). Thus x can be any
real number, r say, and then $y=-3 r$. (Using Gaußian elimination strictly we would set $y=t$, where t can be any real number, and conclude that $x=-t / 3$.) Thus, the set of all eigenvectors with corresponding eigenvalue 4 is

$$
\left\{\binom{r}{-3 r}: r \in \mathbb{R} \mid r \neq 0\right\} .
$$

(b) Let $A=\left(\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right)$. The characteristic polynomial of A is $\operatorname{det}\left(A-x \mathrm{I}_{2}\right)=$ $\left|\begin{array}{cc}4-x & 0 \\ 0 & 4-x\end{array}\right|=(4-x)^{2}=(x-4)^{2}$. Thus the only eigenvalue of A is 4 . To determine the eigenvectors with corresponding eigenvalue 4, we solve

$$
\left(A-4 \mathrm{I}_{2}\right)\binom{x}{y}=\binom{0}{0}, \quad \text { that is } \quad\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{0}{0},
$$

and observe that all $\binom{x}{y} \in \mathbb{R}^{2}$ are solutions.
[Alternatively, observe that $A \mathbf{v}=4 \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{2}$.]
Thus, the set of all eigenvectors with corresponding eigenvalue 4 consists of all the elements of \mathbb{R}^{2} except for the zero vector, that is, $\mathbb{R}^{2} \backslash\left\{\mathbf{0}_{2}\right\}$, or equivalently

$$
\left\{\mathbf{v} \in \mathbb{R}^{2} \left\lvert\, \mathbf{v} \neq\binom{ 0}{0}\right.\right\} .
$$

(c) Let $A=\left(\begin{array}{rr}-2 & -1 \\ 1 & -4\end{array}\right)$. The characteristic polynomial of A is $\operatorname{det}\left(A-x \mathbf{I}_{2}\right)=$ $\left|\begin{array}{cc}-2-x & -1 \\ 1 & -4-x\end{array}\right|=(-2-x)(-4-x)-(-1)=x^{2}+6 x+9=(x+3)^{2}$. Thus the only eigenvalue of A is -3 .

To determine the eigenvectors with corresponding eigenvalue -3 , we solve

$$
\left(A+3 \mathrm{I}_{2}\right)\binom{x}{y}=\binom{0}{0}, \quad \text { that is } \quad\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right)\binom{x}{y}=\binom{0}{0} .
$$

This is equivalent to the single equation $x-y=0$ (both equations are identical here). Thus y can be any real number, r say, and then $x=r$. Thus, the set of all eigenvectors with corresponding eigenvalue -3 is

$$
\left\{\binom{r}{r}: r \in \mathbb{R} \mid r \neq 0\right\} .
$$

Note that in this part and the previous one, we obtained a repeated eigenvalue. In the previous part, ignoring the zero vector, we obtained a 2 -space of corresponding eigenvectors, while in this part (which shows more typical behaviour) we only obtain a 1 -space of corresponding eigenvectors (ignoring the zero vector).

Practice Question 3. Let $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 0 \\ 1 & 2 & 4\end{array}\right)$.
(a) The characteristic polynomial of A is

$$
\begin{aligned}
\operatorname{det}\left(A-x \mathrm{I}_{3}\right) & =\left|\begin{array}{ccc}
1-x & 2 & 0 \\
2 & 1-x & 0 \\
1 & 2 & 4-x
\end{array}\right| \\
& =(1-x)(1-x)(4-x)-2(2(4-x))+0 \\
& =(4-x)\left((1-x)^{2}-4\right)=(4-x)\left(x^{2}-2 x-3\right) \\
& =-(x-4)(x-3)(x+1) .
\end{aligned}
$$

Thus the eigenvalues of A are $-1,3$ and 4 .
(b) To determine an eigenvector with corresponding eigenvalue -1 , we solve

$$
\left(A+\mathrm{I}_{3}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad \text { that is } \quad\left(\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
1 & 2 & 5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

which is equivalent to the following system of linear equations:

$$
\left.\begin{array}{rl}
2 x+2 y & =0 \\
2 x+2 y & =0 \\
x+2 y+5 z & =0
\end{array}\right\}
$$

This system is equivalent to

$$
\left.\begin{array}{rl}
2 x+2 y & =0 \\
0 & =0 \\
y+5 z & =0
\end{array}\right\},
$$

which (discarding the degenerate equation $0=0$) is equivalent to

$$
\left.\begin{array}{rl}
2 x+2 y & =0 \\
y+5 z & =0
\end{array}\right\}
$$

which is a system of non-degenerate linear equations in echelon form.
Now z is the only non-leading variable, and so to obtain one solution with x, y, z not all equal to zero, we may take $z=1$, and then we have $y=$ $-5 z=-5$, and $2 x-10=0$, so $x=5$.
Thus $\left(\begin{array}{c}5 \\ -5 \\ 1\end{array}\right)$ is an eigenvector, with corresponding eigenvalue -1 .
[Any nonzero scalar multiple of the above vector is also correct.]
(c) From Part (b), we see that such an ℓ is the line through the origin and $(5,-5,1)$, and so ℓ has vector equation $\mathbf{r}=\mu\left(\begin{array}{c}5 \\ -5 \\ 1\end{array}\right)$.
[Of course it is acceptable for the parameter to be called λ instead of μ, although now we are mostly using λ to denote an eigenvalue.]

Practice Question 4. We have $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}=\lambda \mathbf{u}+\lambda \mathbf{v}=\lambda(\mathbf{u}+\mathbf{v})$, where the equality $A \mathbf{u}+A \mathbf{v}=\lambda \mathbf{u}+\lambda \mathbf{v}$ follows from the fact that \mathbf{u} and \mathbf{v} are eigenvectors of A, both with corresponding eigenvalue λ.
Thus, if $\mathbf{u}+\mathbf{v} \neq \mathbf{0}_{n}$, then $\mathbf{u}+\mathbf{v}$ is an eigenvector of A with corresponding eigenvalue λ. (And if $\mathbf{u}+\mathbf{v}=\mathbf{0}_{n}$ then $\mathbf{u}+\mathbf{v}$ is not an eigenvector of A, by definition.)

Practice Question 5. [My intention when setting this question was that S_{θ} corresponds to a reflexion in a line through O at (anticlockwise) angle $\theta / 2$ to the (positive) x-axis, as per my preferred convention. But in lectures this year you had S_{θ} corresponding to a reflexion in a line through O at angle θ to the x-axis. This has no effect on the answer Part (c), and only a minimal effect on Part (b). It does, however, have some effect on Part (a).]
(a) We have

$$
A=S_{\theta} S_{0}=\left(\begin{array}{rr}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{rr}
\cos 2 \theta & -\sin 2 \theta \\
\sin 2 \theta & \cos 2 \theta
\end{array}\right)=R_{2 \theta},
$$

and so A represents the rotation through angle 2θ. Now

$$
\begin{aligned}
B=S_{\pi} S_{\theta} & =\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{rr}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right)=\left(\begin{array}{rr}
\cos 2 \theta & \sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta
\end{array}\right) \\
& =\left(\begin{array}{rr}
\cos (-2 \theta) & -\sin (-2 \theta) \\
\sin (-2 \theta) & \cos (-2 \theta)
\end{array}\right)=R_{-2 \theta},
\end{aligned}
$$

and so B represents the rotation through angle -2θ.
It is especially unfortunate that $S_{\pi}=S_{0}$ under the convention in force. It was my intention that S_{π} be the reflexion in the y-axis (the equivalent of $S_{\pi / 2}$ from lectures), whereas S_{0} is the reflexion in the x-axis. So let us answer the question as it was intended. We have

$$
A=S_{\theta} S_{0}=\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)=R_{\theta}
$$

and so A represents the rotation through angle θ. Now

$$
\begin{aligned}
B=S_{\pi} S_{\theta} & =\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)=\left(\begin{array}{rr}
-\cos \theta & -\sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right) \\
& =\left(\begin{array}{rr}
\cos (\pi-\theta) & -\sin (\pi-\theta) \\
\sin (\pi-\theta) & \cos (\pi-\theta)
\end{array}\right)=R_{\pi-\theta},
\end{aligned}
$$

and so B represents the rotation through angle $\pi-\theta$.
(b) We can prove this by showing that $S_{\theta} S_{\theta}=\mathrm{I}_{2}$, as follows:

$$
\begin{aligned}
S_{\theta} S_{\theta} & =\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right)\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right) \\
& =\left(\begin{array}{cc}
(\cos 2 \theta)^{2}+(\sin 2 \theta)^{2} & 0 \\
0 & (\sin 2 \theta)^{2}+(\cos 2 \theta)^{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\mathrm{I}_{2} .
\end{aligned}
$$

Alternatively, we can apply the formula for the inverse of a 2×2 matrix. We have $\operatorname{det} S_{\theta}=-1$, and so

$$
\left(S_{\theta}\right)^{-1}=-\left(\begin{array}{rr}
-\cos 2 \theta & -\sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta
\end{array}\right)=\left(\begin{array}{rr}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right)=S_{\theta} .
$$

[With my preferred convention for S_{θ}, the above proofs would be essentially the same. The only difference is that every occurence of 2θ in a matrix would get replaced by θ; thus $\cos 2 \theta$ becomes $\cos \theta$, and so on.]
(c) [There are (at least) two ways of doing this. Both these ways use Part (b) that shows that a reflexion is its own inverse. The first proof also uses the fact (proved in the Week 8 lecture notes) that if A and B are invertible $n \times n$ matrices then $(A B)^{-1}=B^{-1} A^{-1}$. The second proof checks directly that the required properties to be an inverse hold.]
First proof: We have

$$
\left(S_{\theta_{1}} S_{\theta_{2}} S_{\theta_{3}}\right)^{-1}=\left(S_{\theta_{3}}\right)^{-1}\left(S_{\theta_{1}} S_{\theta_{2}}\right)^{-1}=\left(S_{\theta_{3}}\right)^{-1}\left(S_{\theta_{2}}\right)^{-1}\left(S_{\theta_{1}}\right)^{-1}=S_{\theta_{3}} S_{\theta_{2}} S_{\theta_{1}} .
$$

Second proof: We have

$$
\begin{aligned}
\left(S_{\theta_{1}} S_{\theta_{2}} S_{\theta_{3}}\right)\left(S_{\theta_{3}} S_{\theta_{2}} S_{\theta_{1}}\right) & =S_{\theta_{1}} S_{\theta_{2}} S_{\theta_{3}}\left(S_{\theta_{3}}\right)^{-1}\left(S_{\theta_{2}}\right)^{-1}\left(S_{\theta_{1}}\right)^{-1} \\
& =S_{\theta_{1}} S_{\theta_{2}} \mathrm{I}_{2}\left(S_{\theta_{2}}\right)^{-1}\left(S_{\theta_{1}}\right)^{-1}=S_{\theta_{1}} S_{\theta_{2}}\left(S_{\theta_{2}}\right)^{-1}\left(S_{\theta_{1}}\right)^{-1} \\
& =S_{\theta_{1}} \mathrm{I}_{2}\left(S_{\theta_{1}}\right)^{-1}=S_{\theta_{1}}\left(S_{\theta_{1}}\right)^{-1}=\mathrm{I}_{2},
\end{aligned}
$$

and

$$
\begin{aligned}
\left(S_{\theta_{3}} S_{\theta_{2}} S_{\theta_{1}}\right)\left(S_{\theta_{1}} S_{\theta_{2}} S_{\theta_{3}}\right) & =S_{\theta_{3}} S_{\theta_{2}} S_{\theta_{1}}\left(S_{\theta_{1}}\right)^{-1}\left(S_{\theta_{2}}\right)^{-1}\left(S_{\theta_{3}}\right)^{-1} \\
& =S_{\theta_{3}} S_{\theta_{2}} \mathrm{I}_{2}\left(S_{\theta_{2}}\right)^{-1}\left(S_{\theta_{3}}\right)^{-1}=S_{\theta_{3}} S_{\theta_{2}}\left(S_{\theta_{2}}\right)^{-1}\left(S_{\theta_{3}}\right)^{-1} \\
& =S_{\theta_{3}} \mathrm{I}_{2}\left(S_{\theta_{3}}\right)^{-1}=S_{\theta_{3}}\left(S_{\theta_{3}}\right)^{-1}=\mathrm{I}_{2} .
\end{aligned}
$$

Practice Question 6. This topic was not lectured this year, but does (or will) appear in Chapter 10 of the online notes. From the lecture notes, rotations through θ about the x-axis and z-axis have matrices

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rrr}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

respectively. So $R_{1}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right)$ and $R_{2}=\left(\begin{array}{rrr}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$.
(a) We have $R_{3}=R_{2} R_{1}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.
(b) $\operatorname{det}\left(R_{3}-\mathrm{I}_{3}\right)=\left|\begin{array}{rrr}-1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1\end{array}\right|=(-1)(-1)-1(-1)=0$ (or to show this
determinant is 0 , add the last two columns to the first column and so change the first column to $\mathbf{0}_{3}$). Hence 1 is an eigenvalue.

A corresponding eigenvector is obtained from any nonzero solution of the system of equations:

$$
\left.\begin{array}{r}
-x+0 y+z=0 \\
x-y+0 z=0 \\
0 x+y-z=0
\end{array}\right\} .
$$

So an eigenvector of R_{3} corresponding to the eigenvalue 1 is $\mathbf{u}_{1}:=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ (or any nonzero scalar multiple of this).
(c) Since $R_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, the direction of the axis of rotation of R_{3} is $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
(d) We have

$$
\begin{aligned}
\left(R_{3}\right)^{3} & =\left(\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=I_{3} .
\end{aligned}
$$

Hence applying the rotation R_{3} three times gives the identity. So if R_{3} is a rotation through angle θ we deduce that $3 \theta=2 \pi k$ for some integer k. (Angles are only defined up to adding integer multiples of 2π.) Since R_{3} itself is not the identity, we deduce that R_{3} is a rotation through $\pm 2 \pi / 3$ (modulo integer multiples of 2π).
(Looking from $(1,1,1)$ towards $O=(0,0,0)$, this rotation is through an anticlockwise angle of $2 \pi / 3$.)
(e) Let $R_{4}=R_{1} R_{2}=\left(\begin{array}{rrr}0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0\end{array}\right)$. Then $\operatorname{det}\left(R_{4}-\mathrm{I}_{3}\right)=\left|\begin{array}{rrr}-1 & -1 & 0 \\ 0 & -1 & -1 \\ 1 & 0 & -1\end{array}\right|=$ $(-1)(+1)+1(+1)=0$, so +1 is an eigenvalue, and an eigenvector corresponding to this eigenvalue 1 is $\mathbf{u}_{2}:=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ (or any nonzero scalar multiple of this). Thus $R_{4}=R_{1} R_{2}$ has an axis of rotation different from that for $R_{2} R_{1}$. But a direct calculation of $\left(R_{4}\right)^{3}$ shows that $\left(R_{4}\right)^{3}=\mathrm{I}_{3} \neq R_{4}$, so R_{4} is still a rotation through $\pm 2 \pi / 3$. (Looking from ($1,-1,1$) towards $O=(0,0,0)$, this rotation is through an anticlockwise angle of $2 \pi / 3$.)

Let $A=\left(a_{i j}\right)_{n \times n}$ and $B=\left(b_{i j}\right)_{n \times n}$ be square matrices. The trace of A, denoted $\operatorname{tr} A$, is the sum of the (top-left to bottom-right) diagonal entries of A. Thus $\operatorname{tr} A:=\sum_{i=1}^{n} a_{i i}$. (We do not care about the top-right to bottom-left 'diagonal'.) The order of A, denoted o (A), is the least integer $m \geqslant 1$ such that $A^{m}=1$. If no such m exists, then A has infinite order, and we write $\mathrm{o}(A)=\infty$. In the above both R_{1} and R_{2} have order 4 , while both $R_{1} R_{2}$ and $R_{2} R_{1}$ have order 3 .
We have seen that $A B \neq B A$ in general. Nonetheless, certain properties are shared by $A B$ and $B A$, including determinant, trace, characteristic polynomial, order, and set of eigenvalues, though the corresponding eigenvectors are in general different.

For example, $R_{1} R_{2}$ and $R_{2} R_{1}$ both have determinant 1 , trace 0 , order 3 , characteristic polynomial $1-x^{3}$, and eigenvalue set $\left\{1, \frac{1}{2}(-1+\mathrm{i} \sqrt{3}), \frac{1}{2}(-1-\mathrm{i} \sqrt{3})\right\}$, where $\mathrm{i}^{2}=-1$. However, the eigenvectors of $R_{1} R_{2}$ and $R_{2} R_{1}$ corresponding to the eigenvalue 1 differ, and cannot be made the same by scaling. In fact, \mathbf{u}_{1} is not an eigenvector of $R_{1} R_{2}$ for any eigenvalue, and \mathbf{u}_{2} is not an eigenvector of $R_{2} R_{1}$ for any eigenvalue

Dr John N. Bray, 26th March 2014

