Geometry I

Solutions 9

19 ${ }^{\text {th }}$ March 2014

Practice Question 1.

(a) The matrix representing s is $A=\left(\begin{array}{rrr}1 & -1 & 5 \\ 3 & 4 & 0 \\ -2 & -1 & 1\end{array}\right)$. The matrix representing t is $B=\left(\begin{array}{rr}1 & -1 \\ 1 & 5 \\ -2 & 4\end{array}\right)$. The matrix representing $s \circ t$ is $A B=\left(\begin{array}{rr}-10 & 14 \\ 7 & 17 \\ -5 & 1\end{array}\right)$.
(b) $s\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)=A\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)=\left(\begin{array}{rrr}1 & -1 & 5 \\ 3 & 4 & 0 \\ -2 & -1 & 1\end{array}\right)\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)=\left(\begin{array}{c}2 \\ 5 \\ 1\end{array}\right)$.
(c) $(s \circ t)\binom{-3}{4}=(A B)\binom{-3}{4}=\left(\begin{array}{rr}-10 & 14 \\ 7 & 17 \\ -5 & 1\end{array}\right)\binom{-3}{4}=\left(\begin{array}{l}86 \\ 47 \\ 19\end{array}\right)$.
(d) We have $s: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $t: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. Thus, for $\mathbf{u} \in \mathbb{R}^{3}$, we should have $(t \circ s)(\mathbf{u})=t(s(\mathbf{u}))$, but $s(\mathbf{u}) \in \mathbb{R}^{3}$ and the domain of t is \mathbb{R}^{2}, and so $t \circ s$ does not make sense.

Practice Question 2. In this question, for consistency with lectures, S_{θ} is the matrix representing the reflexion in the line at (anticlockwise) angle θ to the (positive) x-axis, rather my preferred convention that the angle be $\theta / 2$. The effect of this is that I have used $S_{3 \pi / 4}, S_{-\pi / 4}, S_{0}$ and $S_{\pi / 2}$ below instead of my preferred notation of $S_{3 \pi / 2}, S_{-\pi / 2}, S_{0}$ and S_{π} respectively. The matrices obtained as the answers are identical under either convention.
(a) The line $y=-x$ is at angle $3 \pi / 4$ from the (positive) x-axis, and so a reflexion in this line is represented by

$$
S_{3 \pi / 4}=\left(\begin{array}{rr}
\cos 2\left(\frac{3 \pi}{4}\right) & \sin 2\left(\frac{3 \pi}{4}\right) \\
\sin 2\left(\frac{3 \pi}{4}\right) & -\cos 2\left(\frac{3 \pi}{4}\right)
\end{array}\right)=\left(\begin{array}{rr}
\cos \frac{3 \pi}{2} & \sin \frac{3 \pi}{2} \\
\sin \frac{3 \pi}{2} & -\cos \frac{3 \pi}{2}
\end{array}\right)=\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right) .
$$

Note that you could have said that the angle is $-\pi / 4$ instead, and so the reflexion is $S_{-\pi / 4}$. Fortunately, we have $\cos \left(-\frac{\pi}{2}\right)=0=\cos \frac{3 \pi}{2}$ and $\sin \left(-\frac{\pi}{2}\right)=-1=\sin \frac{3 \pi}{2}$, and so $S_{-\pi / 4}=S_{3 \pi / 4}$.
Alternatively, you could equally well just observe that the reflexion sends $(1,0) \rightarrow(0,-1)$ and $(0,1) \rightarrow(-1,0)$, and deduce that the matrix has these as its columns.
(b) This rotation is represented by $R_{\pi / 2}=\left(\begin{array}{rr}\cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{2}\end{array}\right)=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$.
(c) [Note the order of multiplication!] This transformation is represented by

$$
R_{\pi / 2} S_{3 \pi / 4}=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)=S_{0} .
$$

(d) [Note the order of multiplication!] This transformation is represented by

$$
S_{3 \pi / 4} R_{\pi / 2}=\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)=S_{\pi / 2}
$$

Feedback Question. If s and t are maps (functions), whether linear or not, from \mathbb{R}^{n} to \mathbb{R}^{m}, we can define the maps $s+t$ and λs (where $\lambda \in \mathbb{R}$ is a scalar) by $(s+t)(\mathbf{x}):=s(\mathbf{x})+t(\mathbf{x})$ and $(\lambda s)(\mathbf{x}):=\lambda(s(\mathbf{x}))$ for all $\mathbf{x} \in \mathbb{R}^{n}$. The maps $-s$ and $s-t$ are defined in a similar manner. If s and t are linear then so are $s+t$ and λs [proof exercise]. But if s and t are not linear then $s+t$ is unlikely to be (but can be occasionally). Thus to determine whether a map is linear (or not), we can split a map into its components and determine this for each one; this is useful for Parts (f) and (g).
A theorem of lectures tells us that a linear map $s: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ must satisfy $s\left(\mathbf{0}_{n}\right)=\mathbf{0}_{m}$ and $s(-\mathbf{v})=-s(\mathbf{v})$ for all $\mathbf{v} \in \mathbb{R}^{n}$. So a (possible) way of proving that $s: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is not linear is to show that $s\left(\mathbf{0}_{n}\right) \neq \mathbf{0}_{m}$, or to exhibit a vector \mathbf{v} such that $s(-\mathbf{v}) \neq-s(\mathbf{v})$. Note however that the non-linear maps (s) of Parts (c), (d) and (e) satisfy $s\left(\mathbf{0}_{n}\right)=\mathbf{0}_{m}$, and it is even possible for a non-linear map $s: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ to satisfy $s\left(\mathbf{0}_{n}\right)=\mathbf{0}_{m}$ and $s(-\mathbf{v})=-s(\mathbf{v})$ for all $\mathbf{v} \in \mathbb{R}^{n}$, such as the one in Part (c).
(a) A function $t: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation if for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and all $\alpha \in \mathbb{R}$ we have $t(\mathbf{u}+\mathbf{v})=t(\mathbf{u})+t(\mathbf{v})$ and $t(\alpha \mathbf{u})=\alpha t(\mathbf{u})$.
(b) The function $t: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $t\binom{a}{b}=\binom{-4 b}{3 a+b}$ is linear. We prove this directly by checking the two rules that must be satisfied for t to be a linear transformation.
Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$, with $\mathbf{u}=\binom{u_{1}}{u_{2}}$ and $\mathbf{v}=\binom{v_{1}}{v_{2}}$, and let $\alpha \in \mathbb{R}$. Then

$$
\begin{aligned}
t(\mathbf{u}+\mathbf{v}) & =t\binom{u_{1}+v_{1}}{u_{2}+v_{2}}=\binom{-4\left(u_{2}+v_{2}\right)}{3\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right)} \\
& =\binom{-4 u_{2}-4 v_{2}}{3 u_{1}+u_{2}+3 v_{1}+v_{2}}=\binom{-4 u_{2}}{3 u_{1}+u_{2}}+\binom{-4 v_{2}}{3 v_{1}+v_{2}} \\
& =t(\mathbf{u})+t(\mathbf{v})
\end{aligned}
$$

and

$$
t(\alpha \mathbf{u})=t\binom{\alpha u_{1}}{\alpha u_{2}}=\binom{-4 \alpha u_{2}}{3 \alpha u_{1}+\alpha u_{2}}=\binom{\alpha\left(-4 u_{2}\right)}{\alpha\left(3 u_{1}+u_{2}\right)}=\alpha t(\mathbf{u}) .
$$

(c) The function $t: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $t\binom{a}{b}=\binom{2 a}{b^{3}}$ is not linear. One way to see this is set $\mathbf{u}=\binom{0}{1}$, and note that $t(2 \mathbf{u})=8 \mathbf{u}=8 t(\mathbf{u}) \neq 2 t(\mathbf{u})$.
(d) In this part, and the next, \mathbb{R} is of course \mathbb{R}^{1}. The function $t: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $t(\mathbf{r})=|\mathbf{r}|$ is not linear, and nor is any function $t: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $t(\mathbf{r})=|\mathbf{r}|^{m}$, where $m \in \mathbb{N}$. We have $|\mathbf{i}|=|-\mathbf{i}|=1$, and so, for any m, we have $t(\mathbf{i})=t(-\mathbf{i})=1^{m}=1$. Therefore, $t(-\mathbf{i}) \neq-t(\mathbf{i})$.
(e) The function $t: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $t(\mathbf{r})=\mathbf{r} \cdot \mathbf{r}=|\mathbf{r}|^{2}$ is not linear, since it is the case $m=2$ of the previous part.
(f) The function $t: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $t(\mathbf{r})=2(\mathbf{i} \cdot \mathbf{r}) \mathbf{k}-3(\mathbf{r} \times \mathbf{j})$ is linear, and each"component" $\mathbf{r} \mapsto 2(\mathbf{i} \cdot \mathbf{r}) \mathbf{k}$ and $\mathbf{r} \mapsto-3(\mathbf{r} \times \mathbf{j})$ is also linear. In fact, theorems much earlier in the course are tantamount to stating that the dot and cross products are linear in both variables, a property that is called bilinearity. (Note that both the dot and cross products are functions of two variables.)
So let us prove that t is linear. For all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$ and all scalars $\alpha \in \mathbb{R}$ we have

$$
\begin{aligned}
t(\mathbf{u}+\mathbf{v}) & =2(\mathbf{i} \cdot(\mathbf{u}+\mathbf{v})) \mathbf{k}-3((\mathbf{u}+\mathbf{v}) \times \mathbf{j}) \\
& =2((\mathbf{i} \cdot \mathbf{u})+(\mathbf{i} \cdot \mathbf{v})) \mathbf{k}-3((\mathbf{u} \times \mathbf{j})+(\mathbf{v} \times \mathbf{j})) \\
& =(2(\mathbf{i} \cdot \mathbf{u}) \mathbf{k}-3(\mathbf{u} \times \mathbf{j}))+(2(\mathbf{i} \cdot \mathbf{v}) \mathbf{k}-3(\mathbf{v} \times \mathbf{j}))=t(\mathbf{u})+t(\mathbf{v})
\end{aligned}
$$

and

$$
\begin{aligned}
t(\alpha \mathbf{u}) & =2(\mathbf{i} \cdot(\alpha \mathbf{u})) \mathbf{k}-3((\alpha \mathbf{u}) \times \mathbf{j})=2(\alpha(\mathbf{i} \cdot \mathbf{u})) \mathbf{k}-3(\alpha(\mathbf{u} \times \mathbf{j})) \\
& =2 \alpha(\mathbf{i} \cdot \mathbf{u}) \mathbf{k}-3 \alpha(\mathbf{u} \times \mathbf{j})=\alpha(2(\mathbf{i} \cdot \mathbf{u}) \mathbf{k}-3(\mathbf{u} \times \mathbf{j}))=\alpha t(\mathbf{u}),
\end{aligned}
$$

and so t is linear. (Standard properties of \cdot and \times are used throughout.)
(g) The function $t: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $t(\mathbf{r})=\mathbf{r} \times(2 \mathbf{r})+(\mathbf{i} \cdot \mathbf{r}) \mathbf{r}+\mathbf{j}+(\mathbf{k} \times \mathbf{r}) \times \mathbf{r}$ is not linear, since $t\left(\mathbf{0}_{3}\right)=\mathbf{j} \neq \mathbf{0}_{3}$. The only "component" of this that is linear (and even this superficially looks non-linear) is the map $\mathbf{r} \mapsto \mathbf{r} \times(2 \mathbf{r})$, since $\mathbf{r} \times(2 \mathbf{r})=\mathbf{0}_{3}$ for all $\mathbf{r} \in \mathbb{R}^{3}$.

Dr John N. Bray, 19th March 2014

