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Practice Question 1.
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(a) The matrix representing s is A = 3 4 0 |. The matrix representing
-2 -11
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tis B = 1 5 |. The matrix representing sot is AB = 717
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(bys| 2 | =4 2 | = 3 40 2 | =15
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3 3 —-10 14 3 86
o ()= (F)= (T ) (2)-(
-5 1 19

(d) We have s : R® — R? and ¢ : R* — R3. Thus, for u € R?, we should have
(tos)(u) = t(s(u)), but s(u) € R® and the domain of ¢ is R?, and so t o s
does not make sense.

Practice Question 2. In this question, for consistency with lectures, Sy is the
matrix representing the reflexion in the line at (anticlockwise) angle 6 to the
(positive) z-axis, rather my preferred convention that the angle be /2. The
effect of this is that I have used Ssx/s, S_r/4, So and Sy below instead of my
preferred notation of Ssr /2, S_r/2, Sp and Sy respectively. The matrices obtained
as the answers are identical under either convention.

(a) The line y = —z is at angle 37/4 from the (positive) x-axis, and so a
reflexion in this line is represented by

3m : 3m 3 i 3T
Somys — COSQ(g) Sln2(§) _ C?Sg smg _ ( 0 —1 ) .
sin2(5F) —cos2(<F) sin <+ —cos % -1 0



Note that you could have said that the angle is —m/4 instead, and so
the reflexion is S_,/4. Fortunately, we have cos(—%) = 0 = cos %' and

sin(—%) = —1 =sin 37”, and s0 S_;/4 = Sar/4.

Alternatively, you could equally well just observe that the reflexion sends
(1,0) — (0,—1) and (0,1) — (—1,0), and deduce that the matrix has these
as its columns.

sinZ cosZ 1 0

cosZ —sinZ _
(b) This rotation is represented by R/ = ( 2 2 > _ < 0 -1 )
2 2

(¢) [Note the order of multiplication!] This transformation is represented by

0 —1 0 -1 1 0
R“/253”/4:(1 o><—1 o):<0—1)250'

(d) [Note the order of multiplication!] This transformation is represented by
0 -1 0 —1 -1 0
537r/4R7r/2 = <_1 0 ) ( 1 0 ) = ( 0 1 > = Sﬂ—/g.

Feedback Question. If s and ¢ are maps (functions), whether linear or not, from
R™ to R™, we can define the maps s + ¢t and As (where A € R is a scalar) by
(s +1)(x) :== s(x) + t(x) and (As)(x) := A(s(x)) for all x € R*. The maps —s
and s —t are defined in a similar manner. If s and ¢ are linear then so are s +¢
and As [proof exercise]. But if s and ¢ are not linear then s + ¢ is unlikely to be
(but can be occasionally). Thus to determine whether a map is linear (or not),
we can split a map into its components and determine this for each one; this is
useful for Parts (f) and (g).

A theorem of lectures tells us that a linear map s : R® — R™ must satisfy
s(0,) = 0,, and s(—v) = —s(v) for all v.€ R". So a (possible) way of proving
that s : R” — R™ is not linear is to show that s(0,,) # 0,,, or to exhibit a vector
v such that s(—v) # —s(v). Note however that the non-linear maps (s) of Parts
(c), (d) and (e) satisfy s(0,) = 0,,, and it is even possible for a non-linear map
s : R" — R™ to satisfy s(0,) = 0,, and s(—v) = —s(v) for all v € R", such as
the one in Part (c).

(a) A function ¢ : R® — R™ is a linear transformation if for all u,v € R™ and
all @ € R we have t(u+v) = t(u) + t(v) and t(au) = at(u).



(b)

The function ¢ : R? — R? defined by ¢ ( z ) = B;ibb is linear. We

prove this directly by checking the two rules that must be satisfied for ¢ to
be a linear transformation.

Let u,v € R?, with u = ( t ) and v = ( U1 ), and let « € R. Then

U2 V2
. Uy + v . —4(U2 +U2>
tutv)=t ( Uy + Vo ) N ( 3(ug +v1) + (ug + v2) )

—4U2 — 4’02 o —4’LL2 + —41)2
3U1 + ug + 3U1 + U o 3U1 + U9 31)1 + Vg

=t(u) +t(v)

and
=t () = (oo ) = (oo ey ) =0

The function t : R? — R? defined by ¢ ( Z > = ( 2a

B ) is not linear. One

way to see this is set u = , and note that £(2u) = 8u = 8t(u) # 2t(u).

0
1
In this part, and the next, R is of course R!. The function ¢ : R® — R
defined by t¢(r) = |r| is not linear, and nor is any function ¢ : R® — R
defined by t(r) = |r|™, where m € N. We have [i| = | —i| = 1, and so, for
any m, we have t(i) = t(—i) = 1™ = 1. Therefore, t(—1) # —t(i).

The function ¢ : R® — R defined by ¢(r) = r-r = |r|* is not linear, since it
is the case m = 2 of the previous part.

The function ¢ : R* — R? defined by t(r) = 2(i-r)k — 3(r x j) is linear,
and each “component” r — 2(i-r)k and r — —3(r x j) is also linear. In
fact, theorems much earlier in the course are tantamount to stating that
the dot and cross products are linear in both variables, a property that is
called bilinearity. (Note that both the dot and cross products are functions
of two variables.)

So let us prove that t is linear. For all vectors u,v € R3 and all scalars
a € R we have
ttu+v)=2(i-(u+v))k =3((u+v) xj)
=2((iu) + (i-v))k = 3((uxj) + (v xj))
=(2(iru)k —3(uxj)) + (2(i-v)k — 3(v xj)) = t(u) + t(v)

3



and

t(au) = 2(i-(au))k — 3((au) x j) = 2(a(i-u))k — 3(a(u x j))
=2a(i-u)k —3a(u xj) =a2(i-u)k — 3(u x j)) = at(u),

and so t is linear. (Standard properties of - and X are used throughout.)

The function ¢ : R* — R3 defined by ¢(r) = r x (2r) + (i-r)r+j+ (kxr) xr
is not linear, since ¢(03) = j # 03. The only “component” of this that is
linear (and even this superficially looks non-linear) is the map r — r x (2r),
since r X (2r) = 03 for all r € R3.

Dr John N. Bray, 19th March 2014



