MTH4103 (2013–14) Geometry I Solutions 9

19th March 2014

Practice Question 1.

- (a) The matrix representing s is $A = \begin{pmatrix} 1 & -1 & 5 \\ 3 & 4 & 0 \\ -2 & -1 & 1 \end{pmatrix}$. The matrix representing $s \circ t$ is $AB = \begin{pmatrix} -10 & 14 \\ 7 & 17 \\ -5 & 1 \end{pmatrix}$. (b) $s \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = A \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 5 \\ 3 & 4 & 0 \\ -2 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$. (c) $(s \circ t) \begin{pmatrix} -3 \\ 4 \end{pmatrix} = (AB) \begin{pmatrix} -3 \\ 4 \end{pmatrix} = \begin{pmatrix} -10 & 14 \\ 7 & 17 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} -3 \\ 4 \end{pmatrix} = \begin{pmatrix} 86 \\ 47 \\ 19 \end{pmatrix}$.
- (d) We have $s : \mathbb{R}^3 \to \mathbb{R}^3$ and $t : \mathbb{R}^2 \to \mathbb{R}^3$. Thus, for $\mathbf{u} \in \mathbb{R}^3$, we should have $(t \circ s)(\mathbf{u}) = t(s(\mathbf{u}))$, but $s(\mathbf{u}) \in \mathbb{R}^3$ and the domain of t is \mathbb{R}^2 , and so $t \circ s$ does not make sense.

Practice Question 2. In this question, for consistency with lectures, S_{θ} is the matrix representing the reflexion in the line at (anticlockwise) angle θ to the (positive) *x*-axis, rather my preferred convention that the angle be $\theta/2$. The effect of this is that I have used $S_{3\pi/4}$, $S_{-\pi/4}$, S_0 and $S_{\pi/2}$ below instead of my preferred notation of $S_{3\pi/2}$, $S_{-\pi/2}$, S_0 and S_{π} respectively. The matrices obtained as the answers are identical under either convention.

(a) The line y = -x is at angle $3\pi/4$ from the (positive) x-axis, and so a reflexion in this line is represented by

$$S_{3\pi/4} = \begin{pmatrix} \cos 2(\frac{3\pi}{4}) & \sin 2(\frac{3\pi}{4}) \\ \sin 2(\frac{3\pi}{4}) & -\cos 2(\frac{3\pi}{4}) \end{pmatrix} = \begin{pmatrix} \cos \frac{3\pi}{2} & \sin \frac{3\pi}{2} \\ \sin \frac{3\pi}{2} & -\cos \frac{3\pi}{2} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$$

Note that you could have said that the angle is $-\pi/4$ instead, and so the reflexion is $S_{-\pi/4}$. Fortunately, we have $\cos(-\frac{\pi}{2}) = 0 = \cos\frac{3\pi}{2}$ and $\sin(-\frac{\pi}{2}) = -1 = \sin\frac{3\pi}{2}$, and so $S_{-\pi/4} = S_{3\pi/4}$.

Alternatively, you could equally well just observe that the reflexion sends $(1,0) \rightarrow (0,-1)$ and $(0,1) \rightarrow (-1,0)$, and deduce that the matrix has these as its columns.

(b) This rotation is represented by
$$R_{\pi/2} = \begin{pmatrix} \cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{2} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

(c) [Note the order of multiplication!] This transformation is represented by

$$R_{\pi/2}S_{3\pi/4} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = S_0$$

(d) [Note the order of multiplication!] This transformation is represented by

$$S_{3\pi/4}R_{\pi/2} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = S_{\pi/2}.$$

Feedback Question. If s and t are maps (functions), whether linear or not, from \mathbb{R}^n to \mathbb{R}^m , we can define the maps s + t and λs (where $\lambda \in \mathbb{R}$ is a scalar) by $(s+t)(\mathbf{x}) := s(\mathbf{x}) + t(\mathbf{x})$ and $(\lambda s)(\mathbf{x}) := \lambda(s(\mathbf{x}))$ for all $\mathbf{x} \in \mathbb{R}^n$. The maps -s and s - t are defined in a similar manner. If s and t are linear then so are s + t and λs [proof exercise]. But if s and t are not linear then s + t is unlikely to be (but can be occasionally). Thus to determine whether a map is linear (or not), we can split a map into its components and determine this for each one; this is useful for Parts (f) and (g).

A theorem of lectures tells us that a linear map $s : \mathbb{R}^n \to \mathbb{R}^m$ must satisfy $s(\mathbf{0}_n) = \mathbf{0}_m$ and $s(-\mathbf{v}) = -s(\mathbf{v})$ for all $\mathbf{v} \in \mathbb{R}^n$. So a (possible) way of proving that $s : \mathbb{R}^n \to \mathbb{R}^m$ is *not* linear is to show that $s(\mathbf{0}_n) \neq \mathbf{0}_m$, or to exhibit a vector \mathbf{v} such that $s(-\mathbf{v}) \neq -s(\mathbf{v})$. Note however that the non-linear maps (s) of Parts (c), (d) and (e) satisfy $s(\mathbf{0}_n) = \mathbf{0}_m$, and it is even possible for a non-linear map $s : \mathbb{R}^n \to \mathbb{R}^m$ to satisfy $s(\mathbf{0}_n) = \mathbf{0}_m$ and $s(-\mathbf{v}) = -s(\mathbf{v})$ for all $\mathbf{v} \in \mathbb{R}^n$, such as the one in Part (c).

(a) A function $t : \mathbb{R}^n \to \mathbb{R}^m$ is a *linear transformation* if for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and all $\alpha \in \mathbb{R}$ we have $t(\mathbf{u} + \mathbf{v}) = t(\mathbf{u}) + t(\mathbf{v})$ and $t(\alpha \mathbf{u}) = \alpha t(\mathbf{u})$.

(b) The function $t : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $t \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -4b \\ 3a+b \end{pmatrix}$ is **linear**. We prove this directly by checking the two rules that must be satisfied for t to be a linear transformation.

Let
$$\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$$
, with $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$, and let $\alpha \in \mathbb{R}$. Then
 $t(\mathbf{u} + \mathbf{v}) = t \begin{pmatrix} u_1 + v_1 \\ u_2 + v_2 \end{pmatrix} = \begin{pmatrix} -4(u_2 + v_2) \\ 3(u_1 + v_1) + (u_2 + v_2) \end{pmatrix}$
 $= \begin{pmatrix} -4u_2 - 4v_2 \\ 3u_1 + u_2 + 3v_1 + v_2 \end{pmatrix} = \begin{pmatrix} -4u_2 \\ 3u_1 + u_2 \end{pmatrix} + \begin{pmatrix} -4v_2 \\ 3v_1 + v_2 \end{pmatrix}$
 $= t(\mathbf{u}) + t(\mathbf{v})$

and

$$t(\alpha \mathbf{u}) = t \begin{pmatrix} \alpha u_1 \\ \alpha u_2 \end{pmatrix} = \begin{pmatrix} -4\alpha u_2 \\ 3\alpha u_1 + \alpha u_2 \end{pmatrix} = \begin{pmatrix} \alpha(-4u_2) \\ \alpha(3u_1 + u_2) \end{pmatrix} = \alpha t(\mathbf{u}).$$

(c) The function $t : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $t \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 2a \\ b^3 \end{pmatrix}$ is **not linear**. One way to see this is set $\mathbf{u} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, and note that $t(2\mathbf{u}) = 8\mathbf{u} = 8t(\mathbf{u}) \neq 2t(\mathbf{u})$.

- (d) In this part, and the next, \mathbb{R} is of course \mathbb{R}^1 . The function $t : \mathbb{R}^3 \to \mathbb{R}$ defined by $t(\mathbf{r}) = |\mathbf{r}|$ is **not linear**, and nor is any function $t : \mathbb{R}^3 \to \mathbb{R}$ defined by $t(\mathbf{r}) = |\mathbf{r}|^m$, where $m \in \mathbb{N}$. We have $|\mathbf{i}| = |-\mathbf{i}| = 1$, and so, for any m, we have $t(\mathbf{i}) = t(-\mathbf{i}) = 1^m = 1$. Therefore, $t(-\mathbf{i}) \neq -t(\mathbf{i})$.
- (e) The function $t : \mathbb{R}^3 \to \mathbb{R}$ defined by $t(\mathbf{r}) = \mathbf{r} \cdot \mathbf{r} = |\mathbf{r}|^2$ is **not linear**, since it is the case m = 2 of the previous part.
- (f) The function $t : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $t(\mathbf{r}) = 2(\mathbf{i} \cdot \mathbf{r})\mathbf{k} 3(\mathbf{r} \times \mathbf{j})$ is **linear**, and each "component" $\mathbf{r} \mapsto 2(\mathbf{i} \cdot \mathbf{r})\mathbf{k}$ and $\mathbf{r} \mapsto -3(\mathbf{r} \times \mathbf{j})$ is also linear. In fact, theorems much earlier in the course are tantamount to stating that the dot and cross products are linear in both variables, a property that is called *bilinearity*. (Note that both the dot and cross products are functions of two variables.)

So let us prove that t is linear. For all vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ and all scalars $\alpha \in \mathbb{R}$ we have

$$\begin{aligned} t(\mathbf{u} + \mathbf{v}) &= 2(\mathbf{i} \cdot (\mathbf{u} + \mathbf{v}))\mathbf{k} - 3((\mathbf{u} + \mathbf{v}) \times \mathbf{j}) \\ &= 2((\mathbf{i} \cdot \mathbf{u}) + (\mathbf{i} \cdot \mathbf{v}))\mathbf{k} - 3((\mathbf{u} \times \mathbf{j}) + (\mathbf{v} \times \mathbf{j})) \\ &= (2(\mathbf{i} \cdot \mathbf{u})\mathbf{k} - 3(\mathbf{u} \times \mathbf{j})) + (2(\mathbf{i} \cdot \mathbf{v})\mathbf{k} - 3(\mathbf{v} \times \mathbf{j})) = t(\mathbf{u}) + t(\mathbf{v}) \end{aligned}$$

and

$$t(\alpha \mathbf{u}) = 2(\mathbf{i} \cdot (\alpha \mathbf{u}))\mathbf{k} - 3((\alpha \mathbf{u}) \times \mathbf{j}) = 2(\alpha(\mathbf{i} \cdot \mathbf{u}))\mathbf{k} - 3(\alpha(\mathbf{u} \times \mathbf{j}))$$

= $2\alpha(\mathbf{i} \cdot \mathbf{u})\mathbf{k} - 3\alpha(\mathbf{u} \times \mathbf{j}) = \alpha(2(\mathbf{i} \cdot \mathbf{u})\mathbf{k} - 3(\mathbf{u} \times \mathbf{j})) = \alpha t(\mathbf{u}),$

and so t is linear. (Standard properties of \cdot and \times are used throughout.)

(g) The function $t : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $t(\mathbf{r}) = \mathbf{r} \times (2\mathbf{r}) + (\mathbf{i} \cdot \mathbf{r})\mathbf{r} + \mathbf{j} + (\mathbf{k} \times \mathbf{r}) \times \mathbf{r}$ is **not linear**, since $t(\mathbf{0}_3) = \mathbf{j} \neq \mathbf{0}_3$. The only "component" of this that is linear (and even this superficially looks non-linear) is the map $\mathbf{r} \mapsto \mathbf{r} \times (2\mathbf{r})$, since $\mathbf{r} \times (2\mathbf{r}) = \mathbf{0}_3$ for all $\mathbf{r} \in \mathbb{R}^3$.

Dr John N. Bray, 19th March 2014