MTH4103 (2013–14) Geometry I

Solutions 8

12th March 2014

Practice Question 1.

- (a) Let $A = \begin{pmatrix} 7 & -4 \\ 5 & -3 \end{pmatrix}$. Then det $A = -21 (-20) = -1 \neq 0$, and so A is invertible. Thus $A^{-1} = \frac{1}{\det A} \begin{pmatrix} -3 & 4 \\ -5 & 7 \end{pmatrix} = -\begin{pmatrix} -3 & 4 \\ -5 & 7 \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ 5 & -7 \end{pmatrix}$.
- (b) Let $A = \begin{pmatrix} 6 & -4 \\ -15 & 10 \end{pmatrix}$. Then det A = 60 60 = 0, and so A is not invertible.
- (c) Let $A = \begin{pmatrix} 4 & -3 \\ 3 & 2 \end{pmatrix}$. Then det $A = 8 (-9) = 17 \neq 0$, and so A is invertible. Thus $A^{-1} = \frac{1}{\det A} \begin{pmatrix} 2 & 3 \\ -3 & 4 \end{pmatrix} = \frac{1}{17} \begin{pmatrix} 2 & 3 \\ -3 & 4 \end{pmatrix} = \begin{pmatrix} \frac{2}{17} & \frac{3}{17} \\ -\frac{3}{17} & \frac{4}{17} \end{pmatrix}$.

Practice Question 2. (a) Let
$$A = \begin{pmatrix} 1 & -3 & 2 \\ -1 & 1 & -1 \\ -4 & -2 & -1 \end{pmatrix}$$
. Then

$$\det A = \begin{vmatrix} 1 & -1 \\ -2 & -1 \end{vmatrix} - (-1) \begin{vmatrix} -3 & 2 \\ -2 & -1 \end{vmatrix} + (-4) \begin{vmatrix} -3 & 2 \\ 1 & -1 \end{vmatrix} = -3 + 7 - 4 = 0.$$
(b) Let $A = \begin{pmatrix} 4 & 2 & 1 \\ 2 & 3 & 1 \\ 0 & 3 & -1 \end{pmatrix}$. Then

$$\det A = 4 \begin{vmatrix} 3 & 1 \\ 3 & -1 \end{vmatrix} - 2 \begin{vmatrix} 2 & 1 \\ 3 & -1 \end{vmatrix} + 0 \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = -24 - (-10) + 0 = -14.$$

Practice Question 3. By applying column operations to A (subtracting Column 3 from the other two) we see that:

$$\det A = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 1(1) - 0 + 0 = 1.$$

Letting A_{ij} denote the 2 × 2 matrix obtained from A by deleting the *i*-th row and *j*-th column, and applying the formula for A^{-1} from the notes, we deduce that

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} \det A_{11} & -\det A_{21} & \det A_{31} \\ -\det A_{12} & \det A_{22} & -\det A_{32} \\ \det A_{13} & -\det A_{23} & \det A_{33} \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & -1 & 3 \end{pmatrix}.$$

We may write the equations together as the matrix equation $A\mathbf{x} = \mathbf{y}$, where \mathbf{x} is the column vector $(3 \times 1 \text{ matrix})$ with entries x_1, x_2, x_3 , and \mathbf{y} is the column vector with entries y_1, y_2, y_3 . Now $A\mathbf{x} = \mathbf{y}$ if and only if $A^{-1}A\mathbf{x} = A^{-1}\mathbf{y}$ if and only if $\mathbf{I}_n\mathbf{x} = A^{-1}\mathbf{y}$ if and only if $\mathbf{x} = A^{-1}\mathbf{y}$. So the (unique) solution for the equations for given y_1, y_2, y_3 is

$$x_1 = y_1 - y_3, \quad x_2 = y_2 - y_3, \quad x_3 = -y_1 - y_2 + 3y_3.$$

Practice Question 4. From lectures, we know that $(AB)^{-1} = B^{-1}A^{-1}$ and $(AB)^{\mathsf{T}} = A^{\mathsf{T}}B^{\mathsf{T}}$ for all invertible $n \times n$ matrices. So we have:

$$(AB)^{-\mathsf{T}} = ((AB)^{-1})^{\mathsf{T}} = (B^{-1}A^{-1})^{\mathsf{T}} = (A^{-1})^{\mathsf{T}}(B^{-1})^{\mathsf{T}} = A^{-\mathsf{T}}B^{-\mathsf{T}}.$$

Practice Question 5. First we note that A^{T} , B^{T} , $(A + B)^{\mathsf{T}}$, $(-A)^{\mathsf{T}}$, $-(A^{\mathsf{T}})$, $(\lambda A)^{\mathsf{T}}$ and $\lambda (A^{\mathsf{T}})$ are all $n \times m$ matrices, while both A and $(A^{\mathsf{T}})^{\mathsf{T}}$ are $m \times n$ matrices. So in all parts of the question, the two matrices we are trying to prove equal have the same size $(m \times n \text{ in Part } (a), \text{ and } n \times m \text{ for the other parts})$.

(a) For all i and j (with $1 \leq i \leq m$ and $1 \leq j \leq n$) we have

(i, j)-entry of $(A^{\mathsf{T}})^{\mathsf{T}} = (j, i)$ -entry of $(A^{\mathsf{T}}) = (i, j)$ -entry of A,

and so $(A^{\mathsf{T}})^{\mathsf{T}} = A$, since $(A^{\mathsf{T}})^{\mathsf{T}}$ and A have the same size $(m \times n)$, and the same (i, j)-entry for all applicable i and j.

- (b) For all i and j (with $1 \le i \le n$ and $1 \le j \le m$) the (i, j)-entries of A^{T} , B^{T} and $(A+B)^{\mathsf{T}}$ are the same as the (j, i)-entries A, B and A+B respectively, namely a_{ji} , b_{ji} and $a_{ji} + b_{ji}$. Therefore $A^{\mathsf{T}} + B^{\mathsf{T}}$ has (i, j)-entry $a_{ji} + b_{ji}$, which is also the (i, j)-entry of $(A+B)^{\mathsf{T}}$, and so $(A+B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}}$.
- (c) This is a specialisation of Part (d) to $\lambda = -1$, so please see the next part.

(d) For all i and j (with $1 \le i \le n$ and $1 \le j \le m$) we have:

$$(i, j)\text{-entry of } (\lambda A)^{\mathsf{T}} = (j, i)\text{-entry of } \lambda A = \lambda \times ((j, i)\text{-entry of } A)$$
$$= \lambda \times ((i, j)\text{-entry of } A^{\mathsf{T}}) = (i, j)\text{-entry of } \lambda(A^{\mathsf{T}}),$$

and so $(\lambda A)^{\mathsf{T}} = \lambda (A^{\mathsf{T}})$ for all $m \times n$ matrices A and all scalars λ .

Practice Question 6. Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ and } B = \begin{pmatrix} p & q \\ r & s \end{pmatrix}, \text{ so that } A + B = \begin{pmatrix} a+p & b+q \\ c+r & d+s \end{pmatrix}.$$

The adjugates of A, B and A + B are respectively as follows:

$$\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
, $\begin{pmatrix} s & -q \\ -r & p \end{pmatrix}$ and $\begin{pmatrix} d+s & -(b+q) \\ -(c+r) & a+p \end{pmatrix}$.

It is now immediately apparent that $\operatorname{adj} A + \operatorname{adj} B = \operatorname{adj}(A + B)$.

If A and B are any 1×1 matrices then $\operatorname{adj} A = \operatorname{adj} B = \operatorname{adj}(A+B) = I_1$, so that $\operatorname{adj}(A+B) = I_1 \neq 2I_1 = \operatorname{adj} A + \operatorname{adj} B$.

For the 3 × 3 case, we let $A = B = I_3$. Then $\operatorname{adj} A = \operatorname{adj} B = \operatorname{adj}(A + B) = I_3$, so that $\operatorname{adj}(A + B) = \operatorname{adj}(2I_3) = 4I_3 \neq 2I_3 = \operatorname{adj} A + \operatorname{adj} B$. More generally, if we let $A = \alpha I_3$ and $B = \beta I_3$, where α and β are scalars, then $\operatorname{adj} A = \alpha^2 I_3$, and so we find that $\operatorname{adj}(A + B) \neq \operatorname{adj} A + \operatorname{adj} B$ if and only if $2\alpha\beta \neq 0$. Let E_{ij} denote the 3 × 3 matrix with 1 in the (i, j)-position, and 0's elsewhere. Then

$$\operatorname{adj} E_{11} = \operatorname{adj} E_{22} = \operatorname{adj} E_{11} + \operatorname{adj} E_{22} = 0_{3 \times 3} \neq E_{33} = \operatorname{adj}(E_{11} + E_{22}).$$

Some cases of equality in the 3×3 case are as follows. Let A and B be scalar multiples of the all-1's matrix $J_3 = 1_{3\times 3}$. Then $\operatorname{adj} A = \operatorname{adj} B = \operatorname{adj}(A + B) = 0_{3\times 3} = \operatorname{adj} A + \operatorname{adj} B$.

Feedback Question.

(a) You should have provided a proof valid for $n \times n$ matrices (by applying the definition of invertibility in your lecture notes), and not just handle the case of 2×2 matrices (using determinants or otherwise). The relevant place to look is Definition 7.4 in Section 7.8 of the online notes.

This is true. If A is an invertible $n \times n$ matrix, then

$$(-2A)(-\frac{1}{2}A^{-1}) = (-2)(-\frac{1}{2})(AA^{-1}) = I_n,$$

and

$$(-\frac{1}{2}A^{-1})(-2A) = (-\frac{1}{2})(-2)(A^{-1}A) = I_n,$$

and so -2A is invertible [and $(-2A)^{-1} = -\frac{1}{2}A^{-1}$, where the bracketing in the expression $-\frac{1}{2}A^{-1}$ should be understood as $-\frac{1}{2}(A^{-1})$, which is not the same as $(-\frac{1}{2}A)^{-1}$].

(b) This is false. For example, let $A = I_2$ and $B = -I_2$. Then both A and B are invertible (det $A = \det B = 1 \neq 0$), but $A + B = 0_{2\times 2}$ is certainly not invertible (det $0_{2\times 2} = 0$).

This statement is false for $n \times n$ matrices for all $n \ge 1$. We can take $A = I_n$ and $B = -I_n$ so that both A and B are self-inverse (we have $A^2 = B^2 = I_n$), but $A + B = 0_{n \times n}$ is not invertible since $C0_{n \times n} = 0_{n \times n}C = 0_{n \times n} \neq I_n$ for all $n \times n$ matrices C. (We did not use determinants here, but note that I_n , $-I_n$ and $0_{n \times n}$ have determinants 1, $(-1)^n$ and 0 respectively.)

(c) This is true. If A is an invertible 2×2 matrix, we have

$$\det(A) \det(A^{-1}) = \det(AA^{-1}) = \det I_2 = 1,$$

and so det $A \neq 0$ and det $(A^{-1}) = 1/\det A$.

(d) This is true. The matrix αA can be formed by multiplying each of the three columns of A by α , and, by Theorem 8.5 in the lecture notes, each multiplication of a column by α multiplies the determinant by α . Hence, $\det(\alpha A) = \alpha^3 \det A$.

[Note: It is acceptable to write det αA for det (αA) , but it is not acceptable to write det -A for det(-A), nor to write det A + B for det(A + B).]

(e) This is false. Actually, $\det(\alpha A) = \alpha^2 \det A$ for all 2×2 matrices A. But $\alpha^2 \det A = \alpha \det A$ precisely when $\det A = 0$ or $\alpha \in \{0, 1\}$. So, for example, the inequality $\det(\alpha A) \neq \alpha^2 \det A$ **does not hold** when $\alpha = 1$ and $A = I_2$.

Dr John N. Bray, 12th March 2014