Geometry I

Solutions 8

$12^{\text {th }}$ March 2014

Practice Question 1.

(a) Let $A=\left(\begin{array}{ll}7 & -4 \\ 5 & -3\end{array}\right)$. Then $\operatorname{det} A=-21-(-20)=-1 \neq 0$, and so A is invertible. Thus $A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{ll}-3 & 4 \\ -5 & 7\end{array}\right)=-\left(\begin{array}{ll}-3 & 4 \\ -5 & 7\end{array}\right)=\left(\begin{array}{ll}3 & -4 \\ 5 & -7\end{array}\right)$.
(b) Let $A=\left(\begin{array}{rr}6 & -4 \\ -15 & 10\end{array}\right)$. Then $\operatorname{det} A=60-60=0$, and so A is not invertible.
(c) Let $A=\left(\begin{array}{rr}4 & -3 \\ 3 & 2\end{array}\right)$. Then $\operatorname{det} A=8-(-9)=17 \neq 0$, and so A is invertible. Thus $A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{rr}2 & 3 \\ -3 & 4\end{array}\right)=\frac{1}{17}\left(\begin{array}{rr}2 & 3 \\ -3 & 4\end{array}\right)=\left(\begin{array}{rr}\frac{2}{17} & \frac{3}{17} \\ -\frac{3}{17} & \frac{4}{17}\end{array}\right)$.

Practice Question 2. (a) Let $A=\left(\begin{array}{rrr}1 & -3 & 2 \\ -1 & 1 & -1 \\ -4 & -2 & -1\end{array}\right)$. Then $\operatorname{det} A=\left|\begin{array}{rr}1 & -1 \\ -2 & -1\end{array}\right|-(-1)\left|\begin{array}{rr}-3 & 2 \\ -2 & -1\end{array}\right|+(-4)\left|\begin{array}{rr}-3 & 2 \\ 1 & -1\end{array}\right|=-3+7-4=0$.
(b) Let $A=\left(\begin{array}{rrr}4 & 2 & 1 \\ 2 & 3 & 1 \\ 0 & 3 & -1\end{array}\right)$. Then

$$
\operatorname{det} A=4\left|\begin{array}{rr}
3 & 1 \\
3 & -1
\end{array}\right|-2\left|\begin{array}{rr}
2 & 1 \\
3 & -1
\end{array}\right|+0\left|\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right|=-24-(-10)+0=-14 .
$$

Practice Question 3. By applying column operations to A (subtracting Column 3 from the other two) we see that:

$$
\operatorname{det} A=\left|\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right|=\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 1 & 1
\end{array}\right|=\left|\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right|=1(1)-0+0=1 .
$$

Letting $A_{i j}$ denote the 2×2 matrix obtained from A by deleting the i-th row and j-th column, and applying the formula for A^{-1} from the notes, we deduce that

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{rrr}
\operatorname{det} A_{11} & -\operatorname{det} A_{21} & \operatorname{det} A_{31} \\
-\operatorname{det} A_{12} & \operatorname{det} A_{22} & -\operatorname{det} A_{32} \\
\operatorname{det} A_{13} & -\operatorname{det} A_{23} & \operatorname{det} A_{33}
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
-1 & -1 & 3
\end{array}\right)
$$

We may write the eqations together as the matrix equation $A \mathbf{x}=\mathbf{y}$, where \mathbf{x} is the column vector (3×1 matrix) with entries x_{1}, x_{2}, x_{3}, and \mathbf{y} is the column vector with entries y_{1}, y_{2}, y_{3}. Now $A \mathbf{x}=\mathbf{y}$ if and only if $A^{-1} A \mathbf{x}=A^{-1} \mathbf{y}$ if and only if $\mathrm{I}_{n} \mathbf{x}=A^{-1} \mathbf{y}$ if and only if $\mathbf{x}=A^{-1} \mathbf{y}$. So the (unique) solution for the equations for given y_{1}, y_{2}, y_{3} is

$$
x_{1}=y_{1}-y_{3}, \quad x_{2}=y_{2}-y_{3}, \quad x_{3}=-y_{1}-y_{2}+3 y_{3}
$$

Practice Question 4. From lectures, we know that $(A B)^{-1}=B^{-1} A^{-1}$ and $(A B)^{\top}=A^{\top} B^{\top}$ for all invertible $n \times n$ matrices. So we have:

$$
(A B)^{-\top}=\left((A B)^{-1}\right)^{\top}=\left(B^{-1} A^{-1}\right)^{\top}=\left(A^{-1}\right)^{\top}\left(B^{-1}\right)^{\top}=A^{-\top} B^{-\top}
$$

Practice Question 5. First we note that $A^{\top}, B^{\top},(A+B)^{\top},(-A)^{\top},-\left(A^{\top}\right)$, $(\lambda A)^{\top}$ and $\lambda\left(A^{\top}\right)$ are all $n \times m$ matrices, while both A and $\left(A^{\top}\right)^{\top}$ are $m \times n$ matrices. So in all parts of the question, the two matrices we are trying to prove equal have the same size ($m \times n$ in Part (a), and $n \times m$ for the other parts).
(a) For all i and j (with $1 \leqslant i \leqslant m$ and $1 \leqslant j \leqslant n$) we have

$$
(i, j) \text {-entry of }\left(A^{\top}\right)^{\top}=(j, i) \text {-entry of }\left(A^{\top}\right)=(i, j) \text {-entry of } A,
$$

and so $\left(A^{\mathrm{\top}}\right)^{\mathrm{\top}}=A$, since $\left(A^{\mathrm{\top}}\right)^{\mathrm{\top}}$ and A have the same size $(m \times n)$, and the same (i, j)-entry for all applicable i and j.
(b) For all i and j (with $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m$) the (i, j)-entries of A^{\top}, B^{\top} and $(A+B)^{\top}$ are the same as the (j, i)-entries A, B and $A+B$ respectively, namely $a_{j i}, b_{j i}$ and $a_{j i}+b_{j i}$. Therefore $A^{\top}+B^{\top}$ has (i, j)-entry $a_{j i}+b_{j i}$, which is also the (i, j)-entry of $(A+B)^{\top}$, and so $(A+B)^{\top}=A^{\top}+B^{\top}$.
(c) This is a specialisation of Part (d) to $\lambda=-1$, so please see the next part.
(d) For all i and j (with $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant m$) we have:

$$
\text { (i,j)-entry of } \begin{aligned}
(\lambda A)^{\top} & =(j, i) \text {-entry of } \lambda A=\lambda \times((j, i) \text {-entry of } A) \\
& =\lambda \times\left((i, j) \text {-entry of } A^{\top}\right)=(i, j) \text {-entry of } \lambda\left(A^{\top}\right),
\end{aligned}
$$

and so $(\lambda A)^{\top}=\lambda\left(A^{\top}\right)$ for all $m \times n$ matrices A and all scalars λ.

Practice Question 6. Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right), \text { so that } A+B=\left(\begin{array}{ll}
a+p & b+q \\
c+r & d+s
\end{array}\right) .
$$

The adjugates of A, B and $A+B$ are respectively as follows:

$$
\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right),\left(\begin{array}{rr}
s & -q \\
-r & p
\end{array}\right) \text { and }\left(\begin{array}{cc}
d+s & -(b+q) \\
-(c+r) & a+p
\end{array}\right)
$$

It is now immediately apparent that adj $A+\operatorname{adj} B=\operatorname{adj}(A+B)$.
If A and B are any 1×1 matrices then $\operatorname{adj} A=\operatorname{adj} B=\operatorname{adj}(A+B)=\mathrm{I}_{1}$, so that $\operatorname{adj}(A+B)=\mathrm{I}_{1} \neq 2 \mathrm{I}_{1}=\operatorname{adj} A+\operatorname{adj} B$.
For the 3×3 case, we let $A=B=\mathrm{I}_{3}$. Then $\operatorname{adj} A=\operatorname{adj} B=\operatorname{adj}(A+B)=\mathrm{I}_{3}$, so that $\operatorname{adj}(A+B)=\operatorname{adj}\left(2 \mathrm{I}_{3}\right)=4 \mathrm{I}_{3} \neq 2 \mathrm{I}_{3}=\operatorname{adj} A+\operatorname{adj} B$. More generally, if we let $A=\alpha \mathrm{I}_{3}$ and $B=\beta \mathrm{I}_{3}$, where α and β are scalars, then $\operatorname{adj} A=\alpha^{2} \mathrm{I}_{3}$, and so we find that $\operatorname{adj}(A+B) \neq \operatorname{adj} A+\operatorname{adj} B$ if and only if $2 \alpha \beta \neq 0$. Let $\mathrm{E}_{i j}$ denote the 3×3 matrix with 1 in the (i, j)-position, and 0 's elsewhere. Then

$$
\operatorname{adj} E_{11}=\operatorname{adj} E_{22}=\operatorname{adj} E_{11}+\operatorname{adj} E_{22}=0_{3 \times 3} \neq E_{33}=\operatorname{adj}\left(E_{11}+E_{22}\right) .
$$

Some cases of equality in the 3×3 case are as follows. Let A and B be scalar multiples of the all-1's matrix $\mathrm{J}_{3}=1_{3 \times 3}$. Then adj $A=\operatorname{adj} B=\operatorname{adj}(A+B)=$ $0_{3 \times 3}=\operatorname{adj} A+\operatorname{adj} B$.

Feedback Question.

(a) You should have provided a proof valid for $n \times n$ matrices (by applying the definition of invertibility in your lecture notes), and not just handle the case of 2×2 matrices (using determinants or otherwise). The relevant place to look is Definition 7.4 in Section 7.8 of the online notes.
This is true. If A is an invertible $n \times n$ matrix, then

$$
(-2 A)\left(-\frac{1}{2} A^{-1}\right)=(-2)\left(-\frac{1}{2}\right)\left(A A^{-1}\right)=\mathrm{I}_{n}
$$

and

$$
\left(-\frac{1}{2} A^{-1}\right)(-2 A)=\left(-\frac{1}{2}\right)(-2)\left(A^{-1} A\right)=\mathrm{I}_{n}
$$

and so $-2 A$ is invertible [and $(-2 A)^{-1}=-\frac{1}{2} A^{-1}$, where the bracketing in the expression $-\frac{1}{2} A^{-1}$ should be understood as $-\frac{1}{2}\left(A^{-1}\right)$, which is not the same as $\left.\left(-\frac{1}{2} A\right)^{-1}\right]$.
(b) This is false. For example, let $A=\mathrm{I}_{2}$ and $B=-\mathrm{I}_{2}$. Then both A and B are invertible ($\operatorname{det} A=\operatorname{det} B=1 \neq 0$), but $A+B=0_{2 \times 2}$ is certainly not invertible ($\operatorname{det} 0_{2 \times 2}=0$).
This statement is false for $n \times n$ matrices for all $n \geqslant 1$. We can take $A=\mathrm{I}_{n}$ and $B=-\mathrm{I}_{n}$ so that both A and B are self-inverse (we have $A^{2}=B^{2}=\mathrm{I}_{n}$), but $A+B=0_{n \times n}$ is not invertible since $C 0_{n \times n}=0_{n \times n} C=0_{n \times n} \neq \mathrm{I}_{n}$ for all $n \times n$ matrices C. (We did not use determinants here, but note that I_{n}, $-\mathrm{I}_{n}$ and $0_{n \times n}$ have determinants $1,(-1)^{n}$ and 0 respectively.)
(c) This is true. If A is an invertible 2×2 matrix, we have

$$
\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det} \mathrm{I}_{2}=1
$$

and so $\operatorname{det} A \neq 0$ and $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det} A$.
(d) This is true. The matrix αA can be formed by multiplying each of the three columns of A by α, and, by Theorem 8.5 in the lecture notes, each multiplication of a column by α multiplies the determinant by α. Hence, $\operatorname{det}(\alpha A)=\alpha^{3} \operatorname{det} A$.
[Note: It is acceptable to write $\operatorname{det} \alpha A$ for $\operatorname{det}(\alpha A)$, but it is not acceptable to write $\operatorname{det}-A$ for $\operatorname{det}(-A)$, nor to write $\operatorname{det} A+B$ for $\operatorname{det}(A+B)$.]
(e) This is false. Actually, $\operatorname{det}(\alpha A)=\alpha^{2} \operatorname{det} A$ for all 2×2 matrices A. But $\alpha^{2} \operatorname{det} A=\alpha \operatorname{det} A$ precisely when $\operatorname{det} A=0$ or $\alpha \in\{0,1\}$. So, for example, the inequality $\operatorname{det}(\alpha A) \neq \alpha^{2} \operatorname{det} A$ does not hold when $\alpha=1$ and $A=\mathrm{I}_{2}$.

Dr John N. Bray, 12th March 2014

