

MTH4103 (2013–14) Geometry I Solutions 7

5th March 2014

Practice Question 1.

(a)
$$AB = \begin{pmatrix} 1 & 12 \\ -3 & -6 \end{pmatrix}$$
.
(b) $BA = \begin{pmatrix} 1 & 9 \\ -4 & -6 \end{pmatrix}$.
(c) $5A - 3BA = \begin{pmatrix} -5 & -15 \\ 5 & 5 \end{pmatrix} + \begin{pmatrix} -3 & -27 \\ 12 & 18 \end{pmatrix} = \begin{pmatrix} -8 & -42 \\ 17 & 23 \end{pmatrix}$
(d) $(B + 3I_2)^2 = \left(\begin{pmatrix} -4 & -3 \\ 1 & -3 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \right)^2 = \begin{pmatrix} -1 & -3 \\ 1 & 0 \end{pmatrix}^2$
 $= \begin{pmatrix} -1 & -3 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & -3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -2 & 3 \\ -1 & -3 \end{pmatrix}$.

(e) Since
$$I_2^{17} = I_2$$
, we have

$$3A + I_2^{17} - 5B = \begin{pmatrix} -3 & -9 \\ 3 & 3 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 20 & 15 \\ -5 & 15 \end{pmatrix} = \begin{pmatrix} 18 & 6 \\ -2 & 19 \end{pmatrix}.$$

Practice Question 2. [An educated trial and error approach should have produced matrices with the required properties, but not necessarily the ones below.]

(a) For example, take
$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
. Then $A \neq 0_{2\times 2}$, but $A^2 = 0_{2\times 2}$.
(b) For example, take $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then $AB = 0_{2\times 2}$, but $BA = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = A \neq 0_{2\times 2}$.

For Part (a) it is fun to find the general 2×2 matrix A satisfying $A \neq 0_{2\times 2} = A^2$. So let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then we want

$$A^{2} = \begin{pmatrix} a^{2} + bc & ab + bd \\ ca + dc & d^{2} + cb \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

but $(a, b, c, d) \neq (0, 0, 0, 0)$. Note that once we have determined the conditions satisfied by a, b, c, d, we must prove that there is a quadruple (a, b, c, d) that satisfies these conditions, hence the explicit example above. The condition that $A^2 = 0_{2\times 2}$ means that we require

$$a^{2} + bc = d^{2} + bc = b(a+d) = c(a+d) = 0.$$
 (1)

If $a + d \neq 0$ then b = c = 0, and Equation 1 becomes $a^2 = d^2 = 0$, whence a = d = 0, which contradicts $a + d \neq 0$. Therefore a + d = 0, and thus d = -a, and now Equation 1 reduces to $a^2 + bc = 0$. So if a = 0 we get b = 0 or c = 0 (or both), and if $a \neq 0$ then $bc = -a^2 \neq 0$ so that $b, c \neq 0$ and so $c = -a^2/b$.

Therefore the possibilities for (a, b, c, d) are (0, 0, 0, 0), $(0, 0, \lambda, 0)$, $(0, \lambda, 0, 0)$ and $(\lambda, \mu, -\lambda^2/\mu, -\lambda)$, where λ and μ are any nonzero numbers. In each of these cases we easily verify that $A^2 = 0_{2\times 2}$, while only in the first of these do we have $A = 0_{2\times 2}$. (We also easily verify that each of the other three cases do exist.)

Practice Question 3. [These are similar to proofs in your Week 8 lecture notes.]

- (a) Now -A has size $m \times n$, and (i, j)-entry $-a_{ij}$, so A + (-A) has size $m \times n$, and (i, j)-entry $a_{ij} + (-a_{ij}) = 0$. Hence $A + (-A) = 0_{m \times n}$.
- (b) Consider first the left-hand side. The matrix $(\alpha + \beta)A$ has size $m \times n$, and has (i, j)-entry

$$(\alpha + \beta)a_{ij} = \alpha a_{ij} + \beta a_{ij}.$$

Now consider the right-hand side. The matrix αA has size $m \times n$ and (i, j)entry αa_{ij} , the matrix βA has size $m \times n$ and (i, j)-entry βa_{ij} , and so $\alpha A + \beta A$ has size $m \times n$ and (i, j)-entry

$$\alpha a_{ij} + \beta a_{ij}$$

Hence $(\alpha + \beta)A = \alpha A + \beta A$.

(c) Consider first the left-hand side. The matrix AX has size $m \times p$, and has (i, j)-entry $a_{i1}x_{1j} + a_{i2}x_{2j} + \cdots + a_{in}x_{nj}$. Therefore $\alpha(AX)$ has size $m \times p$ and (i, j)-entry

$$\alpha(a_{i1}x_{1j} + a_{i2}x_{2j} + \dots + a_{in}x_{nj})$$

Now consider the right-hand side. The matrix αX has size $n \times p$, and so the matrix $A(\alpha X)$ has size $m \times p$. Moreover, the (i, j)-entry of $A(\alpha X)$ is

$$a_{i1}(\alpha x_{1j}) + a_{i2}(\alpha x_{2j}) + \dots + a_{in}(\alpha x_{nj}) = \alpha a_{i1}x_{1j} + \alpha a_{i2}x_{2j} + \dots + \alpha a_{in}x_{nj}$$

= $\alpha (a_{i1}x_{1j} + a_{i2}x_{2j} + \dots + a_{in}x_{nj}).$

Hence $\alpha(AX) = A(\alpha X)$.

Feedback Question.

(a) The expression A - 3B = A + (-3B) has no meaning since the size of A (3×3) is not the same as the size of -3B (3×2) .

(b)
$$-A + 5C = \begin{pmatrix} 7 & 1 & -3 \\ -1 & 0 & 3 \\ -1 & -2 & 0 \end{pmatrix} + \begin{pmatrix} -10 & -10 & 15 \\ 10 & 5 & 0 \\ -5 & 5 & -10 \end{pmatrix} = \begin{pmatrix} -3 & -9 & 12 \\ 9 & 5 & 3 \\ -6 & 3 & -10 \end{pmatrix}.$$

(c) $\begin{pmatrix} 1 & 5 & -2 \end{pmatrix} B = \begin{pmatrix} 1 & 5 & -2 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ -3 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} -16 & 5 \end{pmatrix}.$

(d) The expression BA has no meaning since the number of columns of B (2) is not equal to the number of rows of A (3).

(e)
$$CB = \begin{pmatrix} 6 & -1 \\ 3 & -3 \\ -10 & 5 \end{pmatrix}$$
.
(f) $CA = \begin{pmatrix} 15 & 8 & 0 \\ -13 & -2 & 3 \\ 6 & -3 & -6 \end{pmatrix}$.

Dr John N. Bray, 5th March 2014