Solutions 6

$26^{\text {th }}$ February 2014

Practice Question 1.

We have: $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=-((\mathbf{v}+\mathbf{w}) \times \mathbf{u})=-((\mathbf{v} \times \mathbf{u})+(\mathbf{w} \times \mathbf{u}))$, by assumed right-distributivity, and this is $-(-(\mathbf{u} \times \mathbf{v})-(\mathbf{u} \times \mathbf{w}))=(\mathbf{u} \times \mathbf{v})+(\mathbf{u} \times \mathbf{w})$.

Practice Question 2. [Draw a picture to help you visualise the situation, and hence to apply an appropriate theorem from your lecture notes.]
The vector \mathbf{u} represented by $\overrightarrow{A B}$ is

$$
\left(\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right)-\left(\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right),
$$

and the vector \mathbf{v} represented by $\overrightarrow{A D}$ is also that represented by $\overrightarrow{B C}$, which is

$$
\left(\begin{array}{l}
4 \\
1 \\
0
\end{array}\right)-\left(\begin{array}{c}
1 \\
-1 \\
4
\end{array}\right)=\left(\begin{array}{c}
3 \\
2 \\
-4
\end{array}\right) .
$$

By a theorem in the lecture notes, the area of parallelogram $A B C D$ is equal to

$$
|\mathbf{u} \times \mathbf{v}|=|-14 \mathbf{i}+9 \mathbf{j}-6 \mathbf{k}|=\sqrt{(-14)^{2}+9^{2}+(-6)^{2}}=\sqrt{313} .
$$

Note that you obtain the same answer if you (incorrectly) use the cross product of the vectors represented by $\overrightarrow{A B}$ and $\overrightarrow{A C}$ instead $\overrightarrow{A B}$ and $\overrightarrow{A D}$. Indeed, the cross products themselves are actually equal. See the next question for why this 'incorrect' formula always (inadvertently) gives you the correct answer.

Practice Question 3. We suppose that $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$ represent \mathbf{u}, \mathbf{w} and \mathbf{v} respectively, so that $\mathbf{u}=\mathbf{b}-\mathbf{a}, \mathbf{w}=\mathbf{c}-\mathbf{a}$ and $\mathbf{v}=\mathbf{d}-\mathbf{a}$, with the notation chosen so that \mathbf{u} and \mathbf{v} correspond to the sides of the parallelogram $A B C D$ and \mathbf{w} corresponds to a diagonal. From lecture notes, the area of the parallelogram is $|\mathbf{u} \times \mathbf{v}|$. Now $\mathbf{w}=\mathbf{u}+\mathbf{v}$, and so $\mathbf{v}=\mathbf{w}-\mathbf{u}$, and so the area is

$$
|\mathbf{u} \times \mathbf{v}|=|\mathbf{u} \times(\mathbf{w}-\mathbf{u})|=|(\mathbf{u} \times \mathbf{w})-(\mathbf{u} \times \mathbf{u})|=|(\mathbf{u} \times \mathbf{w})-\mathbf{0}|=|\mathbf{u} \times \mathbf{w}|,
$$

and so in terms of \mathbf{a}, \mathbf{b} and \mathbf{c} the area is $|(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})|$.

Practice Question 4. Using the Cartesian equations for the line, ℓ say, we set

$$
\lambda=\frac{x-4}{3}=\frac{y+2}{3}=\frac{z-1}{-5},
$$

giving $x=4+3 \lambda, y=-2+3 \lambda, z=1-5 \lambda$, and so the line has vector equation $\mathbf{r}=\left(\begin{array}{c}4 \\ -2 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ 3 \\ -5\end{array}\right)$. Let $P=(4,-2,1), Q=(-2,1,5), \mathbf{u}=\left(\begin{array}{c}3 \\ 3 \\ -5\end{array}\right)$, and \mathbf{v} be represented by $\overrightarrow{P Q}$. Then $\mathbf{v}=\left(\begin{array}{c}-2 \\ 1 \\ 5\end{array}\right)-\left(\begin{array}{c}4 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{c}-6 \\ 3 \\ 4\end{array}\right)$. Note that P is on ℓ, and we want to find the distance from Q to ℓ. Thus we calculate that

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{rr}
3 & 3 \\
-5 & 4
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
3 & -6 \\
-5 & 4
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
3 & -6 \\
3 & 3
\end{array}\right| \mathbf{k}=27 \mathbf{i}+18 \mathbf{j}+27 \mathbf{k},
$$

and so the distance from Q to the line ℓ is

$$
\frac{|\mathbf{u} \times \mathbf{v}|}{|\mathbf{u}|}=\frac{\sqrt{729+324+729}}{\sqrt{9+9+25}}=\frac{\sqrt{1782}}{\sqrt{43}}=\frac{9 \sqrt{22}}{\sqrt{43}}
$$

Practice Question 5.

(a) These lines are parallel (since their direction vectors are parallel), and so the distance between them is the distance between one, say the first, namely $\mathbf{r}=\left(\begin{array}{c}4 \\ -1 \\ -3\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$, and a point P, say $(5,2,3)$, on the other. Let $A=(4,-1,-3), P=(5,2,3), \mathbf{u}=\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$, and \mathbf{v} be represented by $\overrightarrow{A P}$. Then $\mathbf{v}=\left(\begin{array}{l}5 \\ 2 \\ 3\end{array}\right)-\left(\begin{array}{c}4 \\ -1 \\ -3\end{array}\right)=\left(\begin{array}{l}1 \\ 3 \\ 6\end{array}\right)$, and therefore

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{rr}
-3 & 3 \\
1 & 6
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
2 & 1 \\
1 & 6
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
2 & 1 \\
-3 & 3
\end{array}\right| \mathbf{k}=-21 \mathbf{i}-11 \mathbf{j}+9 \mathbf{k},
$$

and the so distance from P to the (first) line is

$$
\frac{|\mathbf{u} \times \mathbf{v}|}{|\mathbf{u}|}=\frac{\sqrt{441+121+81}}{\sqrt{4+9+1}}=\frac{\sqrt{643}}{\sqrt{14}} .
$$

(b) Let $\mathbf{a}=\left(\begin{array}{c}4 \\ -1 \\ -3\end{array}\right), \mathbf{u}=\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{l}5 \\ 2 \\ 3\end{array}\right), \mathbf{v}=\left(\begin{array}{l}1 \\ 7 \\ 3\end{array}\right)$. Then

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{rr}
-3 & 7 \\
1 & 3
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
2 & 1 \\
-3 & 7
\end{array}\right| \mathbf{k}=-16 \mathbf{i}-5 \mathbf{j}+17 \mathbf{k},
$$

and so the distance between the lines is

$$
\frac{|(\mathbf{b}-\mathbf{a}) \cdot(\mathbf{u} \times \mathbf{v})|}{|\mathbf{u} \times \mathbf{v}|}=\left|\left(\begin{array}{l}
1 \\
3 \\
6
\end{array}\right) \cdot\left(\begin{array}{c}
-16 \\
-5 \\
17
\end{array}\right)\right| / \sqrt{256+25+289}=\frac{71}{\sqrt{570}}
$$

Practice Question 6. If $\mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$ then $|\mathbf{a} \times \mathbf{b}|=\sqrt{|\mathbf{a}|^{2}|\mathbf{b}|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}}=0$, since $\mathbf{a} \times \mathbf{b}=\mathbf{0}$ and $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}|^{2}|\mathbf{b}|^{2}=0$. Else, in the general case, we let θ be the angle between \mathbf{a} and \mathbf{b}. We have $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta \geqslant 0$, and $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$. Thus, we have:

$$
\begin{aligned}
\sqrt{|\mathbf{a}|^{2}|\mathbf{b}|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}} & =\sqrt{|\mathbf{a}|^{2}|\mathbf{b}|^{2}-|\mathbf{a}|^{2}|\mathbf{b}|^{2} \cos ^{2} \theta} \\
& =\sqrt{|\mathbf{a}|^{2}|\mathbf{b}|^{2}\left(1-\cos ^{2} \theta\right)}=\sqrt{|\mathbf{a}|^{2}|\mathbf{b}|^{2} \sin ^{2} \theta} \\
& =|\mathbf{a}||\mathbf{b}||\sin \theta|=|\mathbf{a} \times \mathbf{b}|,
\end{aligned}
$$

where the last equality follows from the fact that $\sin \theta \geqslant 0$ for $0 \leqslant \theta \leqslant \pi$. It is also possible, but not very pretty, to use coördinates to do this question.

Practice Question 7. [For Part (b), you should note when I have used an explicit (counter-)example, and when I have proved something for all quaternions A, B, C, using symbolic computations.]
(a) Using various properties of the dot and cross products, we have:

$$
\begin{aligned}
(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} & =-(\mathbf{c} \times(\mathbf{a} \times \mathbf{b}))=-((\mathbf{c} \cdot \mathbf{b}) \mathbf{a}-(\mathbf{c} \cdot \mathbf{a}) \mathbf{b}) \\
& =(\mathbf{c} \cdot \mathbf{a}) \mathbf{b}-(\mathbf{c} \cdot \mathbf{b}) \mathbf{a}=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{c}) \mathbf{a} .
\end{aligned}
$$

(b) To see that quaternion multiplication is non-commutative, we exhibit an explicit example when the product does not commute. Let A and B be the quaternions $(1, \mathbf{i})$ and $(0, \mathbf{j})$ respectively. We have $A B=(0, \mathbf{j}+\mathbf{k})$, whereas $B A=(0, \mathbf{j}-\mathbf{k})$. [Note that there are pairs of quaternions A and B such that $A B=B A$, for example $A=(1,-\mathbf{i})$ and $B=(2,3 \mathbf{i})$ when we have $A B=B A=(5,-\mathbf{i})$.

For associativity, we let $A=(\alpha, \mathbf{a}), B=(\beta, \mathbf{b})$ and $C=(\gamma, \mathbf{c})$ be general quaternions. We evaluate $A(B C)$ and $(A B) C$ as follows:

$$
\begin{aligned}
A(B C)= & (\alpha, \mathbf{a}) \cdot((\beta, \mathbf{b}) \cdot(\gamma, \mathbf{c})) \\
= & (\alpha, \mathbf{a}) \cdot(\beta \gamma-\mathbf{b} \cdot \mathbf{c}, \beta \mathbf{c}+\gamma \mathbf{b}+\mathbf{b} \times \mathbf{c}) \\
= & (\alpha \beta \gamma-\alpha(\mathbf{b} \cdot \mathbf{c})-\beta(\mathbf{a} \cdot \mathbf{c})-\gamma(\mathbf{a} \cdot \mathbf{b})-\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}), \\
& \alpha \beta \mathbf{c}+\alpha \gamma \mathbf{b}+\alpha(\mathbf{b} \times \mathbf{c})+\beta \gamma \mathbf{a}-(\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \\
& +\beta(\mathbf{a} \times \mathbf{c})+\gamma(\mathbf{a} \times \mathbf{b})+\mathbf{a} \times(\mathbf{b} \times \mathbf{c}))
\end{aligned}
$$

and

$$
\begin{aligned}
(A B) C= & ((\alpha, \mathbf{a}) \cdot(\beta, \mathbf{b})) \cdot(\gamma, \mathbf{c}) \\
= & (\alpha \beta-\mathbf{a} \cdot \mathbf{b}, \alpha \mathbf{b}+\beta \mathbf{a}+\mathbf{a} \times \mathbf{b}) \cdot(\gamma, \mathbf{c}) \\
= & (\alpha \beta \gamma-\gamma(\mathbf{a} \cdot \mathbf{b})-\alpha(\mathbf{b} \cdot \mathbf{c})-\beta(\mathbf{a} \cdot \mathbf{c})-(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}, \\
& \quad \alpha \beta \mathbf{c}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}+\gamma \alpha \mathbf{b}+\gamma \beta \mathbf{a}+\gamma(\mathbf{a} \times \mathbf{b}) \\
& \quad+\alpha(\mathbf{b} \times \mathbf{c})+\beta(\mathbf{a} \times \mathbf{c})+(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}) .
\end{aligned}
$$

The scalar components of $A(B C)$ and $(A B) C$ are equal since $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=$ $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ for all vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$. Comparing the vector components, we see that they are equal if and only if $-(\mathbf{b} \cdot \mathbf{c}) \mathbf{a}+\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}+$ $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$. But both sides of this equality are $-(\mathbf{b} \cdot \mathbf{c}) \mathbf{a}+(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$, hence quaternion multiplication is associative.

Feedback Question.

(a) Let $P=(2,5,1), Q=(-5,2,-1), R=(1,-2,-4)$, let \mathbf{u} be represented by $\overrightarrow{P Q}$ and \mathbf{v} be represented by $\overrightarrow{P R}$. Then $\mathbf{u}=\left(\begin{array}{l}-7 \\ -3 \\ -2\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{l}-1 \\ -7 \\ -5\end{array}\right)$.
We require a Cartesian equation for the plane through $P=(2,5,1)$ and parallel to \mathbf{u} and \mathbf{v}. A vector equation for this plane is $\mathbf{r} \cdot \mathbf{n}=\mathbf{p} \cdot \mathbf{n}$, where $\mathbf{n}=\mathbf{u} \times \mathbf{v}$ and \mathbf{p} is the position vector of P. We can take $\mathbf{n}=\mathbf{u} \times \mathbf{v}=$ $\mathbf{i}-33 \mathbf{j}+46 \mathbf{k}$.
Now $\mathbf{p} \cdot \mathbf{n}=\left(\begin{array}{l}2 \\ 5 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -33 \\ 46\end{array}\right)=-117$, so a vector equation for the plane is $\mathbf{r} \cdot\left(\begin{array}{c}1 \\ -33 \\ 46\end{array}\right)=-117$, and a Cartesian equation is $x-33 y+46 z=-117$.
Note: Any nonzero scalar multiples of the above equations are correct.
(b) Let $P=(3,-1,-2), Q=(4,1,-3), R=(2,3,-1)$, let \mathbf{u} be represented by $\overrightarrow{P Q}$ and \mathbf{v} be represented by $\overrightarrow{P R}$. Then $\mathbf{u}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $\mathbf{v}=\left(\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right)$.
We require a Cartesian equation for the plane through $A=(-4,2,1)$ and parallel to \mathbf{u} and \mathbf{v}. A vector equation for this plane is $\mathbf{r} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}$, where $\mathbf{n}=\mathbf{u} \times \mathbf{v}$ and \mathbf{a} is the position vector of A. We can take $\mathbf{n}=\mathbf{u} \times \mathbf{v}=6 \mathbf{i}+6 \mathbf{k}$. In fact, we can take \mathbf{n} to be any nonzero scalar multiple of $\mathbf{u} \times \mathbf{v}$, and so we choose $\mathbf{n}=\frac{1}{6}(\mathbf{u} \times \mathbf{v})=\mathbf{i}+\mathbf{k}$ instead.
Now $\mathbf{a} \cdot \mathbf{n}=\left(\begin{array}{c}-4 \\ 2 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=-3$, and so a vector equation for the plane is $\mathbf{r} \cdot\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=-3$, and a Cartesian equation is $x+z=-3$.
Note: Any nonzero scalar multiples of the above equations are correct. With $\mathbf{n}=\mathbf{u} \times \mathbf{v}$, we would have algorithmically obtained the Cartesian equation $6 x+6 z=-18$, which is of course equivalent to $x+z=-3$. The points P, Q and R lie on the plane $x+z=1$.

Dr John N. Bray, 26th February 2014

