Solutions 3

29 ${ }^{\text {th }}$ January 2014
Practice Question 1. [It is extremely important that you do not mix up what is a vector and what is a scalar in an expression involving scalar products.]
(a) $\mathbf{a} \cdot \mathbf{b}=6+2-28=-20$.
(b) $\cos \theta=\mathbf{a} \cdot \mathbf{b} /(|\mathbf{a}||\mathbf{b}|)=-20 /(\sqrt{21} \sqrt{62})=-20 / \sqrt{1302}$.
(c) $(\mathbf{a} \cdot(3 \mathbf{a}+\mathbf{b})) \mathbf{b}=\left(\left(\begin{array}{c}2 \\ -1 \\ -4\end{array}\right) \cdot\left(\begin{array}{c}9 \\ -5 \\ -5\end{array}\right)\right) \mathbf{b}=43\left(\begin{array}{c}3 \\ -2 \\ 7\end{array}\right)=\left(\begin{array}{c}129 \\ -86 \\ 301\end{array}\right)$.

Practice Question 2. [Note how we must handle separately the case $\mathbf{u}=\mathbf{0}$ or $\mathrm{v}=0$.]
We first handle the case when $\mathbf{u}=\mathbf{0}$ or $\mathbf{v}=\mathbf{0}$. In this case, $|\mathbf{u}|=0$ or $|\mathbf{v}|=0$, and also $\mathbf{u} \cdot \mathbf{v}=0$ (by definition), and so we have

$$
|\mathbf{u} \cdot \mathbf{v}|=0=|\mathbf{u}||\mathbf{v}| .
$$

Now suppose that \mathbf{u} and \mathbf{v} are nonzero vectors, so that we can talk about the angle θ between them, and have by definition that $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta$. Then we have

$$
|\mathbf{u} \cdot \mathbf{v}|=|(|\mathbf{u}||\mathbf{v}| \cos \theta)|=|\mathbf{u}||\mathbf{v}||\cos \theta| \leqslant|\mathbf{u}||\mathbf{v}|,
$$

since $|\mathbf{u}||\mathbf{v}|>0$ and $|\cos \theta| \leqslant 1$ no matter what the angle θ is.
Practice Question 3. [These proofs are similar to some in your Week 3 lecture notes.]
(a) Let $\mathbf{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right), \mathbf{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$, and $\mathbf{w}=\left(\begin{array}{c}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)$. Then we have:

$$
\begin{aligned}
(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w} & =\left(\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
u_{3}+v_{3}
\end{array}\right) \cdot\left(\begin{array}{c}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right) \\
& =\left(u_{1}+v_{1}\right) w_{1}+\left(u_{2}+v_{2}\right) w_{2}+\left(u_{3}+v_{3}\right) w_{3} \\
& =u_{1} w_{1}+v_{1} w_{1}+u_{2} w_{2}+v_{2} w_{2}+u_{3} w_{3}+v_{3} w_{3} \\
& =\left(u_{1} w_{1}+u_{2} w_{2}+u_{3} w_{3}\right)+\left(v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}\right) \\
& =\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w} .
\end{aligned}
$$

(b) Let $\mathbf{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right), \mathbf{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$, and let α be a scalar. Then we have:

$$
\begin{aligned}
(\alpha \mathbf{u}) \cdot \mathbf{v}=\left(\begin{array}{l}
\alpha u_{1} \\
\alpha u_{2} \\
\alpha u_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right) & =\left(\alpha u_{1}\right) v_{1}+\left(\alpha u_{2}\right) v_{2}+\left(\alpha u_{3}\right) v_{3} \\
& =\alpha\left(u_{1} v_{1}\right)+\alpha\left(u_{2} v_{2}\right)+\alpha\left(u_{3} v_{3}\right) \\
& =\alpha\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) \\
& =\alpha(\mathbf{u} \cdot \mathbf{v}) .
\end{aligned}
$$

Feedback Question. [Some appropriate calculations and explanations should have been given. Note that any nonzero scalar multiple of the given equation for the plane is correct.]
(a) $\left(\begin{array}{c}1 \\ -3 \\ -7\end{array}\right) \cdot\left(\begin{array}{c}-2 \\ 5 \\ -6\end{array}\right)=(1)(-2)+(-3)(5)+(-7)(-6)=25$, and so a Cartesian equation for Π is

$$
-2 x+5 y-6 z=25
$$

(b) The point $(6,1,3)$ is not on Π since

$$
-2(6)+5(1)-6(3)=-25
$$

and so the Cartesian equation for Π is not satisfied.
(c) The point $(-6,-1,-3)$ is on Π since

$$
-2(-6)+5(-1)-6(-3)=25
$$

and so the Cartesian equation for Π is satisfied.
Alternative solutions to Parts (b) and (c) are:

$$
\left(\begin{array}{l}
6 \\
1 \\
3
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
5 \\
-6
\end{array}\right)=-25 \neq 25 \quad \text { and } \quad\left(\begin{array}{c}
-6 \\
-1 \\
-3
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
5 \\
-6
\end{array}\right)=25 .
$$

(d) This distance is

$$
\left|\left(\begin{array}{c}
3 \\
-1 \\
3
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
5 \\
-6
\end{array}\right)-25\right| /\left|\left(\begin{array}{c}
-2 \\
5 \\
-6
\end{array}\right)\right|=|-29-25| / \sqrt{65}=54 / \sqrt{65} .
$$

(e) This distance is

$$
\left|\left(\begin{array}{c}
0 \\
-1 \\
-5
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
5 \\
-6
\end{array}\right)-25\right| /\left|\left(\begin{array}{c}
-2 \\
5 \\
-6
\end{array}\right)\right|=|25-25| / \sqrt{65}=0 .
$$

Alternatively, we have $-2(0)+5(-1)-6(-5)=25$, and so $(0,-1,-5)$ is on Π. Therefore the distance is 0 .
(f) [It is perfectly acceptable to use the vector equation of Π here, except when a Cartesian equation is specifically called for.]
The general form of a Cartesian equation for Π is $a x+b y+c z=d$, where $a, b, c, d \in \mathbb{R}$ and $(a, b, c) \neq(0,0,0)$. Now we suppose there is a vector \mathbf{u} such that the points $U=\left(u_{1}, u_{2}, u_{3}\right)$ and $U^{\prime}=\left(-u_{1},-u_{2},-u_{3}\right)$ with position vectors \mathbf{u} and $-\mathbf{u}$ respectively are both on Π. Then

$$
\begin{aligned}
d & =a\left(-u_{1}\right)+b\left(-u_{2}\right)+c\left(-u_{3}\right) & & \left(\text { as } U^{\prime} \text { is on } \Pi\right) \\
& =-\left(a u_{1}+b u_{2}+c u_{3}\right) & & (\text { by standard properties of } \mathbb{R}) \\
& =-d & & (\text { as } U \text { is on } \Pi) .
\end{aligned}
$$

Thus $d=-d$ and so $d=0$. Therefore, the most general form of a Cartesian equation for Π is

$$
a x+b y+c x=0,
$$

where $(a, b, c) \neq(0,0,0)$. (Actually, we have only shown that the condition $d=0$ is necessary for Π to have the required property. We have not shown this condition is sufficient. But the working below, together with the observation that Π does have a point on it [such as $(0,0,0)$] shows this.) So now if $\left(u_{1}, u_{2}, u_{3}\right)$ is on Π we get $a\left(-u_{1}\right)+b\left(-u_{2}\right)+c\left(-u_{3}\right)=$ $-\left(a u_{1}+b u_{2}+c u_{3}\right)=-0=0$, showing that $\left(-u_{1},-u_{2},-u_{3}\right)$ is on Π.

Dr John N. Bray, 29th January 2014

