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What is algebraic geometry?

Intuition

Algebraic geometry is the study of geometric shapes that can
be (locally/piecewise) described by polynomial equations.

Why restrict to polynomials?

Because they make sense in any field or ring, including the
ones which carry no intrinsic topology.

This gives a ‘universal’ geometric intuition in areas where
classical geometry and topology fail.

Applications in number theory: Diophantine geometry.
Even in positive characteristic.
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Example
A plane curve X defined by

x> +y?2—-1=0.

» Over R, this defines a circle.

» Over C, it is again a quadratic curve, even though it may be
difficult to imagine (as the complex plane has real
dimension 4).
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k-valued points
But we can consider the solutions
X(k) ={(x,y) e kK*: x® + y2 =1}

for any field k.

» What can be said about X(Q)? It is infinite, think of

Pythagorean triples, e.g. (3/5,4/5) € X(Q).
» How about X(F4)? With certainty we can say
[X(Fg)l <q-q =0,

but this is a very crude bound. We intend to return to this
issue (Weil conjectures/Riemann hypothesis for varieties
over finite fields) at the end of the course.
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Problems with non-algebraically closed fields

Example
Problem: for a plane curve Y defined by x2 + y2 +1 =0,

Y(R) = 0.
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(Historical) approaches

» Thus, if we intend to pursue the line of naive algebraic
geometry and study algebraic \varieties through their sets
of points, we better work over an algebraically closed field.

» ltalian school: Castelnuovo, Enriques, Severi—intuitive
approach, classification of algebraic surfaces;

» American school: Chow, Weil, Zariski—gave solid algebraic
foundation to above.

» For the scheme-theoretic approach, we can work over
arbitrary fields/rings, and the machinery of [schemes
automatically performs all the necessary bookkeeping.

» French school: Artin, Serre, Grothendieck—schemes and
cohomology.
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Affine space

Definition
Let k be an algebraically closed field.
» The affine n-space is

Al ={(ai,...,an) : @ € k}.

> Let
A=K[xq,...,Xn]

be the polynomial ring in n variables over k.
» Think of an f € A as a function

f: A} = k;

for P=(ay,...,an) € A", welet f(P) = f(ay,. ..

7an)-
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Vanishing set

Definition
» For f € A, we let
V(f)={P e A": f(P) =0}.

> Let
D(f) = A™\ V(f).

» More generally, for any subset £ C A,

V(E)={Pec A": f(P)=0forall fe E} =[] V(f).
feE
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Properties of V

Proposition (&)

» V(0)=A", V(1) =0;

E C E' implies V(E) 2 V(E');

for a family (Ex)x, V(UAEy) = V(3. E)) = i V(E));
V(EE') = V(E)U V(E');

V(E) = V(\/(E)), where (E) is an ideal of A generated by

E and +/- denotes the radical of an ideal,
Vi={acA:a" e lforsomeneN}.

v

v

v

v

This shows that sets of the form V(E) for E C A (called
algebraic sets) are closed sets of a topology on A", which we
call the Zariski topology.

Note: D(f) are basic open.
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Example

Algebraic subsets of A' are just finite sets.
Thus any two open subsets intersect, far from being Hausdorff.

Proof.

A = k[x] is a principal ideal domain, so every ideal ain Ais
principal, a = (f), for f € A. Since k is ACF, f splits in k, i.e.

f(x)=c(x—a1) - (x—an).

]

Thus V(a) = V(f) ={ay,...,an}.
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Affine varieties

Definition
An affine algebraic variety is a closed subset of A”, together
with the induced Zariski topology.
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Associated Ideal

Definition
Let Y C A" be an arbitrary set (not necessarily closed). The
ideal of Yin Ais

I(Y)={feA: f(P)=0forall P e Y}.

Proposition

1. Y C Y implies I(Y) 2 I(Y');

2. I(UrYx) = Nal(Y>);

3. forany Y C A", V(I(Y)) =Y, the Zariski closure of Y in
A";

4. forany E C A, I(V(E)) = \/(E).
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Proof.

3. Clearly, V(I(Y)) is closed and contains Y. Conversely, if
V(E) 2 Y, then, forevery f € E, f(y) =0 forevery y € Y, so
fel(Y),thus ECI(Y)and V(E) 2 V(I(Y)).

4. |1s commonly known as Hilbert’s Nullstellensatz. Let us write
a = (E). ltis clear that v/a C /(V(a)). For the converse
inclusion, we shall assume:

the weak Nullstellensatz (in (n+ 1) variables):

for a proper ideal J in k[xo, . . ., Xn], we have V(J) # 0 (it is
crucial here that k is algebraically closed).

Suppose f € I(V(a)). The ideal J = (1 — xof) + ain

K[Xo, - - - , kn] has no zero in k™! so we conclude J = (1), i.e.
1 € J. It follows (by substituting 1/f for xo and clearing
denominators) that " € a for some n.

For a complete proof see Atiyah-Macdonald.

O]
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Quasi-compactness

Corollary

D(f) is quasi-compact. (not Hausdorff )

Proof.

If U;D(f;) = D(f), then V(f) = n;V(f;) = V({fi: i € I}), so

fe /{fi:iel}, sothereis afinite [y C [ with

fe{fi:iel}. O
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Corollary

There is a 1-1 inclusion-reversing correspondence

Y — I(Y)
V(a) «—a

between algebraic sets and radical ideals.
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Given a point P = (ay,...,an) € A", theideal mp = I(P) is
maximal (because the set { P} is minimal), and

mp = (Xy — ay,...,Xn — a@n). Weak Nullstellensatz tells us that
every maximal ideal is of this form.
Thus,
(V@)= () I(P)= (] mp= ()] m
PeV(a) PeV(a) moa
m maximal

On the other hand, it is known in commutative algebra that

Va= (] »

p2a
p prime

Thus, Nullstellensatz in fact claims that the two intersections
coincide, i.e., that A is a Jacobson ring.
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Affine coordinate ring

Definition
If Y is an affine variety, its affine coordinate ring is
oY) =A/I(Y).

0(Y) should be thought of as the ring of polynomial functions
Y — k. Indeed, two polynomials f, f' € A define the same
function on Y'iff f — ' € I(Y).
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Remark

» If Y is an affine variety, 0(Y) is a finitely generated
k-algebra.

» Conversely, any finitely generated reduced (no nilpotent
elements) k-algebra is a coordinate ring of an irreducible
affine variety.

Indeed, suppose B is generated by by, ..., b, as a k-algebra,

and define a morphism A = k[xy, ..., xs] — B by x; — b;. Since
B is reduced, the kernel is a radical ideal a, so B = ¢(V(a)).
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Maximal spectrum

Remark

Let Specm(B) denote the set of all maximal ideals of B. Then
we have 1-1 correspondences between the following sets:

1. (points of) Y;

2. Y(k) := Homy(O(Y), k);

3. Specm(4(Y));

4. maximal ideals in A containing I(Y').

LetPeY,P=(ay,...,an). We know I/(P) D I(Y), so the
morphisma: 0(Y)=A/I(Y) = k, x;i+ I(Y) — a; is
well-defined. Since the range is a field, mp = ker(a) is maximal
in 0(Y), and its preimage in A is exactly
I(P)={feA:f(P)=0}.
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Irreducibility

Definition
A topological space X is irreducible if it cannot be written as the
union X = X7 U X, of two proper closed subsets.

Proposition

An algebraic variety is irreducible iff its ideal is prime iff O(Y) is
a domain.
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Proof.
Suppose Y is irreducible, and let fg € I(Y). Then

Y C V(fg) = V(f)u V(g) = (Yn V() u (YN V(9)),

both being closed subsets of Y. Since Y is irreducible, we have
Y=YnV({f)orY=YnV(g),ie, Y V(florY C V(g),i.e.,
fel(Y)orge I(Y). Thus I(Y) is prime.

Conversely, let p be a prime ideal and suppose V(p) = Y7 U Ya.
Thenp = I(Yy)NI(Yz2) D I(Y1)I(Y2), so we have p = I(Y;) or
p=1(Y2),i.e., Yy = V(p)or Yo = V(p), and we conclude that
V(p) is irreducible. O
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Examples

» A" is irreducible; A" = V(0) and 0 is a prime ideal since A

is a domain.
» if P=(ay,...,an) € A", then {P} = V(mp),
mp = (Xy — a1,...,Xp — apn) is @ max ideal, hence prime, so

{P} is irreducible.

» Let f € A= k[x, y] be an irreducible polynomial. Then V/(f)
is an irreducible variety (affine curve); (f) is prime since A
is an unique factorisation domain.

» V(xix2) = V(x1) U V(x2) is connected but not irreducible.
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Noetherian topological spaces

Definition

A topological space X is noetherian, if it has the descending
chain condition (or DCC) on closed subsets: any descending
sequence Y; O Y, D --- of closed subsets eventually
stabilises, i.e., there is an r € N such that Y, = Y, forall i € N.

Proposition (&)

In a noetherian topological space X, every nonempty closed
subset 'Y can be expressed as an irredundant finite union

Y=YiU---UYy

of irreducible closed subsets Y; (irredundant means Y; ¢ Y; for
i # j).The Y; are uniquely determined, and we call them the
irreducible components of Y.
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Noetherian rings

Definition
A ring A is noetherian if it satisfies the following three
equivalent conditions:

1. A has the ascending chain condition on ideals: every
ascending chain /; C L C --- of ideals is stationary
(eventually stabilises);

2. every non-empty set of ideals in A has a maximal element;
3. every ideal in A s finitely generated.
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Hilbert’s Basis Theorem
Theorem (Hilbert’s Basis Theorem)

If A is noetherian, then the polynomial ring A[X1, ..., Xp] iS
noetherian.

Corollary

If A is noetherian and B is finitely generated A-algebra, then B
is also noetherian.

Remark

This means that any algebraic variety Y C A" is in fact a set of
solutions of a finite system of polynomial equations:

f1(X1,...,Xn):O

ﬁn()ﬂ geeey Xh) = 0
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Irreducible components

Corollary

Every affine algebraic variety is a noetherian topological space
and can be expressed uniquely as an irredundant union of
irreducible varieties.

Proof.

O(Y) is afinitely generated k-algebra and a field k is trivially
noetherian, so (YY) is a noetherian ring. A descending chain
of closed subsetsY; O Yo O --- in Y gives rise to an ascending
chain of ideals /(Y1) C I(Y2) C --- in O(Y), which must be
stationary. Thus the original chain of closed subsets must be
stationary too. O
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Finding/computing irreducible components in a concrete case
is a non-trivial task, which can be made efficient by the use of
Grdbner bases.

Example (Exercise&®)

Let Y = V(x? — yz,xz — x) C A3. Show that Y is a union of 3
irreducible components and find their prime ideals.
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Dimension

Definition

» The dimension of a topological space X is the supremum
of all n such that there exists a chain

ZoCZ1C"'CZn

of distinct irreducible closed subsets of X.

» The dimension of an affine variety is the dimension of its
underlying topological space.

gé?not every noetherian space has finite dimension.
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Definition

» Inaring A, the height of a prime ideal p is the supremum of
all n such that there exists a chainpg Cpy C--- Cpp=p
of distinct prime ideals.

» The Krull dimension of A is the supremum of the heights of
all the prime ideals.

Fact
Let B be a finitely generated k-algebra which is a domain. Then

1. dim(B) = tr.deg(k(B)/k), where K(B) is the fraction field of
B;
2. for any prime ideal p of B,

height(p) + dim(B/p) = dim(B).
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Topological and algebraic dimension

Proposition

For an affine variety Y,

dim(Y) = dim(&(Y)).

By the previous Fact, the latter equals the number of
algebraically independent coordinate functions, and we deduce:

Proposition

dim(A") = n.
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Proposition (&)

Let Y be an affine variety.
1. If Y is irreducible and Z is a proper closed subset of Y,
thendim(Z) < dim(Y).
2. Iff € O(Y) is not a zero divisor nor a unit, then
dm(V(f)nY)=dim(Y) -1

Examples

1. Let X, Y C A? be two irreducible plane curves. Then
dim(XNY)<dim(X)=1,so XnN Y is of dimension 0 and
thus it is a finite set.

2. A classification of irreducible closed subsets of A2.

» If dim(Y) = 2 = dim(A?2), then by Prop, Y = A?;

» Ifdim(Y) =1,then Y # A2 s0 0 # I(Y) is prime and thus
contains a non-zero irreducible polynomial f. Since
Y D V(f)and dim(V(f)) = 1, it must be Y = V(f).

» Ifdim(Y) =0, then Y is a point.
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Example (The twisted cubic curve£®)

Let Y C A3 be the set {t,2,13) : t € k}. Show that it is an
affine variety of dimension 1 (i.e., an affine curve).

Hint: Find the generators of /(Y) and show that &(Y) is
isomorphic to a polynomial ring in one variable over k.
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Morphisms of affine varieties
Definition
Let X C A" and Y C A™ be two affine varieties. A morphism
p: X=Y

is @ map such that there exist polynomials
fi,....fm € K[Xq,...,Xn] with

o(P)=(fi(a1,.--,an),...,fm(as,...,an)),

forevery P = (ay,...,an) € X.

Remark (&)

Morphisms are continuous in Zariski topology.
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Morphisms vs algebra morphisms

A morphism ¢ : X — Y defines a k-homomorphism

p:0(Y) = 0(X), ¢(9)=goe,

when g € 0(Y) is identified with a function Y — k.

A k-homomorphism ¢ : (YY) — ¢'(X) defines a morphism

ap: X =Y.
Identify X with X(k) = Hom(&(X), k) and Y by Y(k). Then

(X)) =X o).

Proposition Ap)=¢ and (%) =1).
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Duality between algebra and geometry

Corollary

The functor
X— 0 (X )

defines an arrow-reversing equivalence of categories (€)
between the category of affine varieties over k and the
category of finitely generated reduced k-algebras.

» The ‘inverse’ functor is A — Specm(A). For ¢ : B — A,
Specm(v)) = 4y : Specm(A) — Specm(B),
ap(m) = ¢~ (m), m a max ideal in A.

» This means that X and Y are isomorphic iff (X) and
O(Y) are isomorphic as k-algebras.
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A translation mechanism

That means: every time you see a morphism
X —Y,
you should be thinking that this comes from a morphism
0(X) «— o(Y),
and vice-versa, every time you see a morphism
A<+— B,
you should be thinking of a morphism

Specm(A) — Specm(B).
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Methodology of algebraic geometry

» In physics, one often studies a system X by considering
certain ‘observable’ functions on X.

» In algebraic geometry, all of the relevant information about
an affine variety X is contained in its coordinate ring ¢'(X),
and we can study the geometric properties of X by using
the tools of commutative algebra on &(X).
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Examples (£€)
1. Let X =A'and Y = V(x® — y2) C A?, and let
¢: X =Y, definedby t— (2, 8).
Then ¢ is a morphism which is bijective and bicontinuous

(a homeomorphism in Zariski topology), but ¢ is not an
isomorphism.

2. Let char(k) = p > 0. The Frobenius morphism
e AT 5 ATt P

is a bijective and bicontinuous morphism, but it is not an
isomorphism.
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Sheaves

Definition
Let X be a topological space. A presheaf .# of abelian groups
on X consists of the data:
» for every open set U C X, an abelian group .%(U);
» for every inclusion V <5 U of open subsets of X, a
morphism of abelian groups pyy = Z (i) : 7 (U) — F(V),
such that
1. pouv=%(id:U—U)=id: #(U) —» F(U);
2. it Ws Vs U then Z(ioj) = Z(j) o Z(i), ie.,
pPUW = PVW © PUV-
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Presheaves as functors

The axioms above, in categorical terms, state that a presheaf
Z on a topological space X, is nothing other than a
contravariant functor from the category Zop(X) of open subsets
with inclusions to the category of abelian groups:

F : Top(X)P — ab.
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Sections jargon and stalks

For s € #(U) and V C U, write s [y= pyv(s) and we refer to
puy as restrictions. Write (2) above as

Elements of .#(U) are sometimes called sections of .7 over U,
and we sometimes write . (U) =T (U, .%), where I symbolises
‘taking sections’.

Definition
If P € X, the stalk .%p of .%# at P is the direct limit of the groups

Z(U), where U ranges over the open neighbourhoods of P (via
the restriction maps).
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Stalks and germs of sections

Define the relation ~ on pairs (U, s), where U is an open nhood
of P,and s € .Z(U):

(Ui, 81) ~ (U2, s2)
if there is an open nhood W of P with W C U; n U> such that
St lw= %2 [w -

Then .#p equals the set of ~-equivalence classes, which can
be thought of as ‘germs’ of sections at P.
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Sheaves

Definition
A presheaf .7 on a topological space X is a sheaf provided:

3. if {U;} is an open covering of U, and s, t € .7 (U) are such
thats | U=t | U foralli,then s =t.

4. if {U;} is an open covering of U, and s; € .#(U;) are such
that for each i, j, s [unu= Sj lunu;, then there exists an
s € #(U) such that s [ U; = s;. (note that such an s is
unique by 3.)

‘Unique glueing property’.
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Examples

» Sheaf .# of continuous R-valued functions on a topological
space X:

» Z(U) is the set of continuous functions U — R,
» for V.C U, let puv : Z(U) = F(V), puv(f) =f Iv.
» Sheaf of differentiable functions on a differentiable
manifold;
» Sheaf of holomorphic functions on a complex manifold.
» Constant presheaf: fix an abelian group A and let
Z(U) = Afor all U. This is not a sheaf (€)), its associated
sheaf satisfies
FH(U) = NoW),

where mo(U) is the number of connected components of U.

(provided X is locally connected)
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Sheaf morphisms
Definition

Let .7 and ¢ be presheaves of abelian groups on X.
A morphism ¢ : .# — ¢ consists of the following data:

» For each U open in X, we have a morphism

o(U) : Z(U) = 9(U).

, , i .
» For each inclusion V — U, we have a diagram

©(U)
F(U) —— 9(U)

Z(i) %(i)
32% vy A0, %(JV)
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Sheaf morphisms as natural transformations

In categorical terms, if .# and ¢ are considered as functors
Top(X)°P — 4k, a morphism

o F =Y

is nothing other than a natural transformation (€°) between
these functors.
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Interlude on localisation

Definition
Let A be a commutative ring with 1, and let S> 1 be a
multiplicatively closed subset of A. Define a relation =on Ax S:

(a1,81) = (a,82) if (a1s2 — axs1)s=0 forsome se S

Then = is an equivalence relation and the ring of fractions
S~TA = A x S/ = has the following structure (write a/s for the
class of (a, s)):

(31/31) T (32/32) = (31 So + 3231)/8182,
(31/81)(32/32) = (81 32/31 Sg).

We have a morphism A — S™'A, a+ a/1. @
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Interlude on localisation

Examples

» If Ais a domain, S = A\ {0}, then S~'A'is the ring of
fractions of A.

» If pis a prime ideal in A, then S = A\ p is multiplicative and
S~'Ais denoted A, and called the localisation of A at p.
NB @Ap is indeed a local ring, i.e., it has a unique maximal
ideal.

» Letfc A, S={f":n>0}. Write A = S'A.

» STTA=0iff0 € S.
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Regular functions

Remark
Let X be an affine variety and g, h € ¢(X). Then
g(P)
P h(P)

is a well-defined function D(h) — k.

We would like to consider functions defined on open subsets of
X which are locally of this form.
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Regular functions

Definition
Let U be an open subset of an affine variety X.

» A function f: U — k is regular if for every P € U,
there exist g, h € &(X) with h(P) # 0,
and a neighbourhood V of P such that
the functions f and g/h agree on V.

» The set of all regular functions on U is denoted &x(U).

Proposition (&)

The assignment U — Ox(U) defines a sheaf of k-algebras on
X.

It is called the structure sheaf of X.
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Structure sheaf
Proposition

Let X be an affine variety and let A= ¢0(X) be its coordinate
ring. Then:

» Forany P € X, the stalk
ﬁX,P = Ampa

where the maximal ideal mp = {f € A: f(P) = 0}|is the
image of I(P) in A.
» Foranyf e A,

» In particular,
Ox(X) = A

(so our notation for the coordinate ring is justified )
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Spectrum of a ring
Let A be a commutative ring with 1.

Definition
Spec(A) is the set of all prime ideals in A.

Our goal is to turn X = Spec(A) into a topological space and
equip it with a sheaf of rings, i.e., make it into a ringed space.

Notation:

>

write x € X for a point, and j, for the corresponding prime
ideal in A;

Ax = A, the local ring at x;

my = jxA;, , the maximal ideal of Ay;

)X
k(x) = Ax/my, the residue field at x, naturally isomorphic
to A/ix;
for f € A, write f(x) for the class of f mod jx in k(x). Then
‘f(x) = 0" iff f € jx.
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Examples

1. For afield F, Spec(F) = {0}, k(0) =

2. Let Zp be the ring of p-adic integers. Spec(Zp) = {0, (p)},
and k(0) = Qp, k((p)) = Fp. Generalises to an arbitrary
DVR. &

3. Spec(£) = {0} U{(p) : pprime }. k(0) = Q, k((p)) = Fp.
ForfeZ, f(0)=f/1€Q,and f(p) = f mod p € Fp.

4. For an algebraically closed field k, let A = k[x, y]. Then by

Spec(A) ={0}uU{(x—a,y—b):a,be k}
U{(g): g € Airreducible }.
k(0) = k(x,y), k((x y—>b))= k, (9)) is the fraction

—a, k(
field of the domain A/(g). For f € A, f(0) = f/1 € k(x, y),
f((x — a.x — b)) = f(a,b) € k, {((9)) = (£ + (9))/1 € k(g).
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Spectral topology

Definition
For f € A, let

V(fy={xe X:fecjx}, ie.,thesetofx withf(x)=0;
D(f) = X\ V(f).
For E C A,
V(E)= (| V(f) ={x € X: E Cix}.

feE

The operation V has expected properties:
Thus, the sets V(E) are closed sets for the Zariski topology on
X.
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Definition
For an arbitrary subset Y C X, the ideal of Y'is

j(Y)=)ix lie.,thesetoffec Awithf(x)=0forxeY;
xeY

Remark

Trivially:
VE= () i

xeV(E)

The operation j has the expected properties:
and here the proof is trivial, no need for Nullstellensatz.
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Direct image sheaf

Definition
Let ¢ : X — Y be a continuous map of topological spaces and
let .# be a presheaf on X. The direct image ¢..# is a presheaf
on Y defined by

0. F(U) = Z(p V).

Lemma (£)

If % is a sheaf, S0 is p..%.
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Ringed spaces
Definition
» A ringed space (X, Ox) consists of a topological space X
and a sheaf of rings &x on X, called the structure sheaf.

» A locally ringed space is a ringed space (X, €x) such that
every stalk Ox  is a local ring, x € X.

» A morphism of ringed spaces (X, Ox) — (Y, Oy) is a pair
(p,0), where ¢ : X — Y is a continuous map, and

0 : ﬁy—><p*ﬁx

is a map of structure sheaves.
» (¢, 6) is a morphism of locally ringed spaces, if,
additionally, each induced map of stalks &

93( : ﬁY,gD(X) — ﬁX,x

is a local homomorphism of local rings.
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Spectrum as a locally ringed space

Lemma
There exists a unique sheaf Ox on X = Spec(A) satisfying

Ox(D(f)) ~ As  forf e A
Its stalks are
Oxx~=Ax  (=A)
Definition
By Spec(A) we shall mean the locally ringed space

(Spec(A), ﬁSpec(A))-
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Schemes

Definition

» An affine scheme is a ringed space (X, Ox) which is
isomorphic to Spec(A) for some ring A.

» A scheme is a ringed space (X, Ox) such that every point
has an open affine neighbourhood U (i.e., (U, Ox | U) is
an affine scheme).

» A morphism (X, Ox) — (Y, Oy) is just a morphism of
locally ringed spaces.
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Ring homomorphisms induce morphisms of affine
schemes
Definition

A ring homomorphism ¢ : B — A gives rise to a morphism of
affine schemes X = Spec(A) and Y = Spec(B):

(%, @) : (Spec(A), ﬁSpec(A)) — (Spec(B), ﬁSpec(B))a

where

> Ap(x) =y iff jy=¢7(x); (e, %(p) = ¢~ (p))
» $: 0y — 3,0y is characterised by (for g € B):

PO (31 D(g)) —— Ox(D((9)))

Aso(g)

0v(D(9))

By

b/g" — ¢(b)/¢(9)"
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A remarkable equivalence of categories
It turns out that every morphism of affine schemes is induced
by a ring homomorphism.

Proposition

There is a canonical isomorphism

Hom(Spec(A), Spec(B)) ~ Hom(B, A).

Corollary

The functors A — Spec(A)
Ox(X) «—= X

define an arrow-reversing equivalence of categories between
the category of commutative rings and the
category of affine schemes.
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Adjointness of Spec and global sections

More generally:
Proposition

Let X be an arbitrary scheme, and let A be a ring. There is a
canonical isomorphism

Hom(X, Spec(A)) ~ Hom(A, I'(X)),

where I'(X) = Ox(X) is the ‘global sections’ functor.
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Sum of schemes
Proposition

Let X1 and X, be schemes. There exists a scheme Xi [ Xz,
called the sum of X; and X, together with morphisms
Xi — Xy ][ Xo such that for every scheme Z

Hom(Xj HXg,Z) ~ Hom(X7, Z) x Hom(X>, Z),

i.e., every solid commutative diagram

can be completed by a unique dashed morphism.
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Proof.
We reduce to affine schemes X; = Spec(A;). Then

X HX2 = SpeC(A1 X A2)
[]

The underlying topological space of Xj [[ Xz is a disjoint union
of the X.
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Relative context

Definition

Let us fix a scheme S.
» An S-scheme, or a scheme over S is a morphism X — S.
» A morphism of S-schemes is a diagram

NS

S
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Example

» Let k be a field (or even a ring) and S = Spec(k). The
category of affine S-schemes is equivalent to the category
of k-algebras.

» If k is algebraically closed, and we consider only reduced
finitely generated k-algebras, the resulting category is
essentially the category of affine algebraic varieties over k.
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Products
Proposition

Let X; and X> be schemes over S. There exists a scheme
Xi xg Xo, called the (fibre) product of X; and X, over S,
together with S-morphisms Xy x g Xo — X; such that
for every S-scheme Z

Homg(Z, X1 xg X2) ~ Homg(Z1, X1) x Homg(Z, X2),
i.e., every solid commutative diagram

<
Xi / \ X5
N7
can be completed by a unique dashed morphism.
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Proof.

We reduce to affine schemes X; = Spec(A;) over S = Spec(R).
Then A; are R-algebras and

X1 xg Xo = Spec(A1 RR Ag)
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Scheme-valued points

Definition

» Let X and T be schemes. The set of T-valued points of X

is the set
X(T) =Hom(T, X).

» In a relative setting, suppose X, T are S-schemes. The set
of T-valued points of X over S is the set

X(T)S = HOl’ns(T, X)
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Example

This notation is most commonly used as follows. Consider:
» a system of polynomial equations f; =0,i=1,..., m
defined over a field k, i.e., fi € k[xq,..., Xnl;
» A= k[X1,...,Xn]/(f1,...,fn)
» and let K D k be a field extension.
The associated scheme is X = Spec(A). Then

X(K)k = Homgpec(k) (Spec(K), X)
= Homy (A, K)
~{ae K": f(a)=0forall i}.

When k is algebraically closed, X(k) := X(k)x C k" is what we
called an affine variety V({f;}) at the start. The scheme X
contains much more information.
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Example (£0)

Suppose S is a scheme over a field k, and let X 1 s,y%s
be two schemes over S (in particular, over k). Then

(X x5 V) (K) = X(K) x50 Y(K)
(7 e X(RT € VK, R) — g}
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Products vs topological products

Example

Zariski topology of the product is not the product topology, as
shown in the following example.
Let k be a field, then

A x AT = AT xgpeo() A
— Spec(k[xi] @k k[xz]) = Spec(k[x, xz]) = A®.
The set of k-points A?(k) is the cartesian product
Al(k) x Al(k).
However, as a scheme, A% has more points than the cartesian

square of the set of points of A'.
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Fibres of a morphism

Definition
Let ¢ : X — S be a morphism, and let s € S. There exists a
natural morphism &€

Spec(k(s)) — S.
The fibre of ¢ over sis

Xs = X x g Spec(Kk(s)).

Remark

Xs should be thought of as p~(s), except that the above
definition gives it a structure of a k(s)-scheme.
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Morphisms and families

Example

Consider R = k[z] — A= Kk[x,y, 2]/(y? — x(x — 1)(x — 2)) and
the corresponding morphism

¢ : X = Spec(A) — S = Spec(R).
Then, for s € S corresponding to the ideal (z — ), A € k,
Xs = Xy = Spec(k[x. y]/(y* — x(x = 1)(x = X))

so we can consider ¢ as a family of curves X with parameters
s from S.
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Reduction modulo p

Example

Consider Z — A = Z[x, y]/(y? — x> — x — 1) and the
corresponding morphism

¢ : X = Spec(A) — S = Spec(Z).

Then, for p € S corresponding to the ideal (p) for a prime
integer p,

Xy = Xp = Spec(Fplx, y]/(y* — x° — x = 1)),

as a scheme over [F, = k(p), considered as a reduction of X
modulo p.
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Projective line as a compactification of A

The picture for algebraic geometers:

» Think of P! as the set of lines through a fixed point.

» An equation ax + by + ¢ = 0 describes a line if not both
a, b are 0, and what really matters is the ratio [a : b].
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Riemann sphere

The picture for analysts:
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Projective space

Fix an algebraically closed field k.
Definition
The projective n-space over k is the set P} of equivalence

classes
[ag:ay: - :ap)

of (n+ 1)-tuples (ao, a1, - . . , an) of elements of k, not all zero,
under the equivalence relation

(ag,-..,an) ~ (Aag,...,\an),

forall XA € k'\ {0}.
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Homogeneous polynomials
Let S = k[xo, ..., Xn]-
» Foran arbitrary fe S, P=[ap:---: as) € P", the
expression
f(P)

does not make sense.
» For a homogeneous polynomial f € S of degree d,

f(\ao, ..., an) = X(ap, . .., an),
so it does make sense to consider whether
f(P)=0 or f(P)#0.

» |t is beneficial to consider S as a graded ring

sz@sd,

where Sy is the abelian group consisting of degree d
homogeneous polynomials.
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Projective varieties

Definition
Let T C S be a set of homogeneous polynamials. Let
V(T)={PeP":f(P)=0forall fe T}.
We write
D(f) = P™\ V(f).
This has the expected properties and gives rise to the Zariski
topology on P".
Definition

A projective algebraic variety is a subset of P" of the form V(T),
together with the induced Zariski topology.
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Covering the projective space with open affines

Remark
Let
U=D(x)={[ap: - :an €P":a#0}CP", i=0,...,n.

The maps ¢, : U; — A" defined by

ap aj—1 djy1 an
ill@ :---: a4 = | —,... e, — .
SOI([ 0 n]) ( a; ) 5 a ) a; ) ) a; )

are all homeomorphisms.
Thus we can cover P" by (n+ 1) affine open subsets.
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Example (from affine to projective curve)

Start with your favourite plane curve, e.g.,
X = V(y? — x3— x—1). Substitute y < y/z, x + x/z:

Clear the denominators:
2z =x% 4+ xz° + 2°.

This is a homogeneous equation of a projective curve X in P2
and XN D(z) ~ X.

b
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Graded rings

Definition

» Sis a graded ring if
» S= B, Sa, Sq abelian subgroups;
» Sy Se C Sure-

» Anelement f € Sy is homogeneous of degree d.

» Anideal ain Sis homogeneous if

a=PH(an Sy),

a>0

i.e., if it is generated by homogeneous elements.
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Projective schemes

Definition
Let S be a graded ring.
> Let
S;=ss<s
a>0
> Let

Proj(S) = {p < S:pprime,and S| Z p}.

» For a homogeneous ideal qa, let

Vi (a) = {p € Proj(S) : p 2 a}.

D4 (f) = Proj(S) \ V(f).

As expected, V. makes Proj(S) into a topological space.
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Structure sheaf on Proj(S)
Notation: for p € Proj(S), let S, be the ring of degree zero
elements in T~'S, where T is the multiplicative set of
homogeneous elements in S\ p.
Intuition

If a, f € S are homogeneous of the same degree, then the
function P — a(P)/f(P) makes sense on D, (f).

Definition
For U open in Proj(S),

OU)={s:U— [ Sy | foreachpc U,s(p) € S,
peU
and for each p thereisanhood V>p, VCU
and homogeneous elements a, f of the same degree
such thatforallqg € V,f ¢ q, and s(q) = a/fin Sy}
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Projective scheme is a scheme

Proposition

1. Forp € Proj(S), the stalk 0, ~ Sy,).

2. The sets D, (f), for f € S homogeneous, cover Proj(S),
and

(D+(f), O Ip,(r)) ~ Spec(S(p),
where Sy is the subring of elements of degree 0 in S¢.
3. Proj(S) is a scheme.

Thus we obtained an example of a scheme which is not affine.
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Global regular functions on projective varieties

Remark (&)
The property 2. shows that

0(Proj(S)) = So,

so the only global regular functions on P" = Proj(k[xo, - - -, Xn])
are constant functions, since K[xg, . .., Xnlo = K.
The same statements holds for projective varieties.

Exercise€: for k = C, deduce this from Liouville’s theorem.
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Properties of schemes

» X is connected, or irreducible, if it is so topologically;

» X is reduced, if for every open U, &x(U) has no nilpotents.

» X is integral, if every 0x(U) is an integral domain.

Lemma (£)

X is integral iff it is reduced and irreducible.
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Finiteness properties

» X is noetherian if it can be covered by finitely many open
affine Spec(A;) with each A; a noetherian ring;

» »: X — Yis of finite type if there exists a covering of Y by
open affines V; = Spec(B;) such that for each i, o~ (V)
can be covered by finitely many open affines
Uj = Spec(Aj)) where each Aj is a finitely generated
B;-algebra,;

» ¢ : X — Yisfinite if Y can be covered by open affines
V; = Spec(B;) such that for each i, =1 (V;) = Spec(A))
with A; is a Bj-algebra which is a finitely generated
Bi-module.
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Properness
Definition
Let f: X — Y be a morphism. We say that f is
» separated, if the diagonal A is closed in X xy X;

» closed, if the image of any closed subset is closed;

» universally closed, if every base change of it is closed, i.e.,
for every morphism Y’ — Y, the corresponding morphism

XxyY =Y
is closed;
» proper, if it is separated, of finite type and universally
closed.
Convention

Hereafter, all schemes are separated!!!

91/142



Example

Finite morphisms are proper.

Prove this using the going up theorem of Cohen-Seidenberg:
If B is an integral extension of A, then Spec(B) — Spec(A) is
onto.
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Projective vars as algebraic analogues of compact
manifolds

Proposition

Projective varieties are proper (over K).
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Images of morphisms

Example

LetZ = V(xy —1), X = A" and let 7 : Z — X be the projection
(X,y) — X.
The image 7(Z) = A"\ {0}, so not closed.

Theorem (Chevalley)

Letf: X — Y be a morphism of schemes of finite type. Then
the image of a constructible set is a constructible set (i.e., a
Boolean combination of closed subsets).
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Singularity, intuition via tangents on curves

Suppose we have a point P = (a, b) on a plane curve X
defined by

f(x,y) =0.
In analysis, the tangent to X at P is the line

Sy (Plx= )+ 2 (P)y ~£) =0,

» The partial derivatives of a polynomial make sense over
any field or ring.

» In order for ‘tangent line’ to be defined, we need at least
one of §7(P), §(P) to be nonzero.
» Otherwise, the point P will be ‘singular’.
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Example
The curve y? = x® has a singular point (0, 0).

There are various types of singularities, this is a cusp.
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Tangent space

Definition
Let X C A" be an irreducible affine variety, I = I(X),

P =(ay,...,an) € X. The tangent space Tp(X) to X at Pis the
solution set of all linear equations

}:a& a)=0, fel.

It is enough to take f from a generating set of /. &€

Intuitive definition for varieties:
We say that P is nonsigular on X if

dimk Tp(X) = dim X.
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Derivations

Definition
Let Abe aring, B an A-algebra, and M a module over B. An
A-derivation of B into M is a map

d:B—M

satisfying
1. dis additive;
2. d(bb') = bd(b') + b'd(b);
3. d(a)=0forac A.
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Module of relative differentials

Definition

The module of relative differential forms of B over Ais a
B-module Q25,4 together with an A-derivation d : B — Qp/a
such that: for any A-derivation d’ : B — M, there exists a unique
B-module homomorphism f : Qg,4 — M such that o’ = f o d:

B d

Qp/a
E

M
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Construction of Qg4

Qg4 is obtained as a quotient of the free B-module generated
by symbols {db : b € B} by the submodule generated by
elements:

1. d(bb') — bd(b') — b'd(b), for b,b’ € B;
2. da, for a € A.
And the ‘universal’ derivation is just

d : b — (the coset of) db.
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An intrinsic definition of the tangent space

Lemma

Let X be an affine variety over an algebraically closed field k,
P € X. Let mp be the maximal ideal of 0p. We have
isomorphisms

Derk(Op, k) ~ Homy.jinear(mp/m3, k) =+ Tp(X).

Thus
Qﬁp/k Rop k ~ mp/m,%.

Thus P is nonsingular iff dimx(mp/mp) = dim(&p) iff Q4 /k is @
free 0p-module of rank dim(&p).
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Nonsingularity

Definition

A noetherian local ring (R, m) with residue field k = R/m is
regular, if dimg(m/m?) = dim(R).

By Nakayama’s lemma £, this is equivalent to m having
dim(R) generators.

Definition

» A noetherian scheme X is regular, or nonsingular at x, if
Oy is a regular local ring.
» X is regular/nonsingular if it is so at every point x € X.
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Sheaves of differentials; regularity vs smoothness

Let ¢ : X — Y be a morphism. There exists a sheaf of relative
differentials Qx,y on X and a sheaf morphism d : Ox — Qx/y
such that:

if U= Spec(A) C Y and V = Spec(B) C X are open affine
such that f(V) C U, then QX/Y( V) = QB/A'

Proposition

Let X be an irreducible scheme of finite type over an
algebraically closed field k. Then X is regular over K iff Qx /x is
a locally free sheaf of rank dim(X), i.e., every point has an
open neighbourhood U such that

Qi | U~ (Ox | U)FmX),

@Over non-algebraically closed field the latter is associated
with a notion of smoothness.
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Generic non-singularity

Corollary

If X is a variety over a field k of characteristic O, then there is
an open dense subset U of X which is nonsingular.

Example

@Funny things can happen in characteristic p > 0; think of the
scheme defined by xP + yP = 1.
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DVR’s

Definition
Let K be a field. A discrete valuation of K is a map
v: K\ {0} — Z such that
1. v(xy) = v(x) + v(y);
2. v(x+y) = min(v(x), v(y)).
Then:
» R={xe K:v(x)>0}U{0} is a subring of K, called the
valuation ring;
» m={xeK:v(x)>0}U{0}isanideal in R, and (R, m)
is a local ring.

Definition
A valuation ring is an integral domain R which the valuation ring
of some valuation of Fract(R).
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Characterisations of DVR’s

Fact
Let (R, m) be a noetherian local domain of dimension 1. TFAE:
1. RisaDVR;
2. R is integrally closed;
3. R is aregular local ring;
4. m is a principal ideal.
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Remark
Let X be a nonsingular curve, x € X. Then O is a regular local
ring of dimension 1, and thus a DVR.

A uniformiser at x is a generator of m,.
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Dedekind domains

Fact

Let R be an integral domain which is not a field. TFAE:
1. every nonzero proper ideal factors into primes;

2. R is noetherian, and the localisation at every maximal ideal
is a DVR;

3. R s an integrally closed noetherian domain of dimension 1.

Definition
R is a Dedekind domain if it satisfies (any of) the above
conditions.

Remark
If X is a nonsingular curve, then ¢(X) is a Dedekind domain.
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Divisors

Definition
Let X be an irreducibe nonsingular curve over an algebraically
closed field k.
» A Weil divisor is an element of the free abelian group Div.X
generated by the (closed) points of X, i.e., it is a formal
integer combination of points of X.

» Adivisor D = ), n;x; is effective, denoted D > 0 if all
n; > 0.
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Principal divisors
Definition

Let X be an integral nonsingular curve over an algebraically

closed field k, and let K = k(X) = 0, = lim Ox(U) be its
— U open

function field (where ¢ is the generic point of X), which we think

of as the field of ‘rational functions’ on X.

For f € K*, we let the divisor (f) of f on X be

()= w(f)-x,

xeXo
where vy is the valuation in &. Any divisor which is equal to
the divisor of a function is called a principal divisor.
Remark

Note this is a divisor: if f is represented as fy € Ox(U) on
some open U, and thus (f) is ‘supported’ on V(fy) U X \ U,
which is a proper closed subset of X and it is thus finite.
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Remark

f — (f) is a homomorphism K* — DivX whose image is the
subgroup of principal divisors.

Definition
For a divisor D = ), nyx;, we define the degree of D as

deg(D) = n;,

making deg into a homomorphism DivX — Z.
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Divisor class group

Definition
Let X be a non-singular difference curve over k.
» Two divisors D, D’ € DivX are linearly equivalent, written
D~ D', if D— D'is a principal divisor.
» The divisor class group C1X is the quotient of DivX by the
subgroup of principal divisors.
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Ramification

Definition

Let ¢ : X — Y be a morphism of nonsingular curves, y € Y and
x € X with 7(x) = y.

The ramification index of ¢ at x is

ex(p) = VX(‘Pﬁty)a

where * is the local morphism ¢, — 60 induced by ¢ and

ty is a uniformiser at y, i.e., my = (t,).

When ¢ is finite, we can define a morphism ¢* : DivY — DivX
by extending the rule

e (y)= > ex(p)-x

p(X)=y

for prime divisors y € Y by linearity to DivY.
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Preservation of multiplicity
Theorem

Let o : X — Y be a morphism of nonsingular projective curves
with o(X) = Y, then deg ¢ = deg(¢*(y)) for any pointy € Y.

Proof reduces to the Chinese Remainder Theorem.
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The number of poles equals the number of zeroes

Corollary

The degree of a principal divisor on a nonsingular projective
curve equals 0.

Proof.
Any f € k(X) defines a morphism f : X — P'. Then

deg((f)) = deg(*(0)) — deg(f*(o0)) = deg(f) — deg(f) = 0.
O

Remark
Hence deg : CI(X) — Z is well-defined.
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Bezout’s theorem

Theorem (Bezout)

Let X C P" be a nonsingular projective curve, and let
H = V. (f) C P" be the hypersurface defined by a
homogeneous polynomial f. Then, writing

XH= > i(x;X,H)x = (f),
xeXNH

we have that
deg(X.H) = deg(X) deg(f),

where deg(X) is the maximal number of points of intersection
of X with a hyperplane in P" (which does not contain a
component of X).
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Proof.
Let d = deg(f). For any linear form I, h = /19 € k(X), so

deg((f)) = deg((1)) + deg((h)) = ddeg(/) + 0 = ddeg(X).

Ol
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Elliptic curves
Let E be a nonsingular projective plane cubic, and pick a point
o € E. For points p, g € E, let p x g be the unique point such
that, writing L for the line pg and using Bezout,
E.L=p+q+p=qg. We define

p®q=o0x*(px*q).

Example (E... y2z=x3—-2xz22,0=00:=[0:1:0])
0=00
y ~
y2 = x2—2x
p*q

X

pq
pdq
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Proposition

Let (E, o) be an elliptic curve, i.e., a nonsingular projective
cubic over k. Then (E(k), ®) is an abelian group.

Proof.

Only the associativity of & needs checking. For a fun proof
&using nothing other than Bezout's Theorem see Fulton’s Alg.
Curves. O
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Aside on algebraic groups

Definition
A group variety over S = Spec(k) is a variety X = S together
with a section e : S — X (identity), and morphisms
w: X xg X — X (group operation) and p : X — X (inverse)
such that

1. po(idxp)=eom: X — X,

2. po(puxid)=po(idxp): XxXxX—X.

Clearly, for a field K extending k, X(K) is a group.
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Examples of algebraic groups

Examples

1. Additive group G, = A}. Multiplicative group
Gm = Spec(k[x, x]).

2. Sly(k) ={(a,b,c,d):ad — bc =1}.
p(a,b,c,d) = (d,—b,—c,a) etc.

3. GLo(k) = Spec(k[a, b,c,d,1/(ad — bc)]).
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Elliptic curves are abelian varieties

Proposition
Let (E, o) be an elliptic curve. Then (E, ®) is a group variety.

In other words, the operations ®: Ex E—- Eando: E — E
are morphisms.

Definition

An abelian variety is a connected and proper group variety (it
follows that the operation is commutative, hence the name).

Thus, elliptic curves are examples of abelian varieties.
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The canonical divisor

Definition
Let X be an integral non-singular projective curve over k. Then
Qx/k is a locally free sheaf of rank 1, and pick a non-zero global
section w € Qx/k(X). For x € X, let t be the uniformiser at x,
and let f € k(X) be such that w = f dt. Define

Vx(w) = Vx(f)’

and the resulting canonical divisor
W=> v(w)x.
X

The divisor W’ of a different ' € Qx/(X) is linearly equivalent
to W, W ~ W, and thus W uniquely determines a canonical
class Ky in C1X.
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Example

[Canonical divisor of an elliptic curve]
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Complete linear systems
Definition
Let D be a divisor on X, and write

L(D) = {f € k(X) : (f) + D > 0O}.

A theorem of Riemann shows that these are finite dimensional
vector spaces over k, and let

I(D) = dim L(D).

Remark

f and f' define the same divisor iff f' = \f, for some )\ # 0, so
we have a bijection

{effective divisors ~ D} « P(L(D)).
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Riemann-Roch Theorem

Definition
The genus of a curve X is I(Kx).

Theorem (Riemann-Roch)

Let D be a divisor on a projective nonsingular curve X of genus
g over an algebraically closed field k. Then

I(D) — I(Kx — D) = deg(D) + 1 — g.

In particular, deg(Kx) = 29 — 2.
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The zeta function

Definition
Let X be a ‘variety’ over a finite field k = [Fq. Its zeta function is
the formal power series

Z(X/Fq, T) =exp ( X(Fqn)T”) .

n
n>1

127/142



Examples

> Let X = Ay We have |A (Fgn)| = g™, so

n>1

N T\n
Z(AY, T) = exp (Z (g nT) ) - - _1qNT.

> For X =Pf,

qn(N+1) _1

g1 =14+¢"+¢"+--+q"", so

PQ’q(Fqn) —

n N ‘ N ;
Z(P,/Fq, T) = exp (Z Z > q”f) =[] 2(a%, /Fq, T)
j=0

n>1 j=0
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Frobenius

Suppose X is over Fg, consider the algebraic closure I_Fq of Fq,
and the Frobenius automorphism

/:d i ﬁfq — E?q, Fi7()() = )(q.

Then Fy acts on X(F4) = Hom(Spec(Fq), X) by precomposing
with 2F,.

Intuitively, if X is affine in AN, then

Fa(x1,...,xn) = (X{, ..., x7).

Remark

X(Fgn) = Fix(FJ).
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Points vs geometric points

Remark

A closed point x € X corresponds to an Fq-orbit of an
x € X(Fq), and

[K(x) : Fq] = [{orbit of x}| = min{n: x € X(Fgn)}.
Definition

For a closed point x € X, let

deg(x) = [k(x) : Fg], Nx = g9,
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Comparison with the Riemann zeta

Recall Riemann’s definition:

()= me= I (-p

n>1 peSpecmZ

Lemma

Z(X/Fq, T)= J] (1 — T,
xeXo

i.e., after a variable change T + q 5,

Z(X/Fq,q%) = [T (1 = Nx—)".

xeX0
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Proof.
Exercise £ upon remarking that

X(Eq)l = S r- [{x € X°: deg(x) = r}].

rin
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The Weil Conjectures
Let X be a smooth projective variety of dimension d over
k =TFq, Z(T):=Z(X/k, T). Then
1. Rationality. Z(T) is a rational function.
2. Functional equation.
1
qiT
where y is the ‘Euler characteristic’ of X.
3. Riemann hypothesis.
2(T) = P1(T)Ps(T) - -- Pag—1(T)
Po(T)P2(T) -+ Po(T)
where each P;(T) has integral coefficients and constant

term 1, and
P(T) = [](1 —ayT),
J
where aj; are algebraic integers with || = q'?. The
degree of P; is the ‘i-th Betti number’ of X.

Z(—g7) = =TXqY2Z(T),
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» The use of ‘Euler characteristic’ and ‘Betti numbers’
implies that the arithmetical situation is controlled by the
classical geometry of X.

» History of proof: Dwork, Grothendieck-Artin, Deligne.
» We shall sketch the rationality for curves.
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Divisors over non-algebraically closed base field

Definition
Let X be a curve over k.

» Div(X) is the free abelian group generated by the closed
points of X.

» For D =3, nix; € Div(X), let
deg(D) =) _ n;deg(x;).
i

» Write Div(n) = {D € Div(X) : deg(D) = n} and
Cl(n) = Div(n)/~.
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Structure of divisor class groups

Using Riemann-Roch, if deg(D) > 2g — 2, then
deg(Kx — D) < 0so I(Kx — D) = 0 and thus

/(D) =deg(D)+1—g.

Therefore, for n > 2g — 2, the number E, of effective divisors of
degree nis

B q qn+1 -9 _ 1 qn+1fg 1
00> Ep= ) = > |C1(n)|ﬁ

Deci(n) Decli(n)

In particular, |Cl(n)| < oc.
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Structure of divisor class groups

Suppose the image of deg : Div(X) — Z is dZ (we will see later
that d = 1). Choosing some D, € Div(d) defines an
isomorphism
Cl(n) = Cl(n+d)
D+—— Dy + D,

and therefore

J ifd|n
ci(n)] = In
0 otherwise,

where J = |C1(0)| is the number of rational points on the
Jacobian of X.
NB d|2g — 2 since deg(Kx) = 29 — 2.
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Rationality of zeta for curves

Z(X/Fq, T) = H (- Tdeg(x))—1 _ Z Tdeg(D) _ Z E,T"

xeX0 D>0 n>0
q q
- z oy > ot
Deci(n) n=2972+d
d|n
B J 29 21d qgf1+d 1
=M +5=T 1_(qT)d 1-T79]"

s0 Z(X/Fq, T) is a rational function in T9 with first order poles
atT=¢ T=25fored =1.
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Lemma (Extension of scalars £)

Z(X xp, For /Bqr, T%) = [ Z(X/Fq,€T).
&r=1

Proposition
d=1.

Proof.

By an analogous argument, Z(X xp, F g /F g, T9) has a first
order pole at T = 1. Using extension of scalars and the fact
that Z(X/Fq, T) is a function of T9, we get

Z(X x5, Fgu/Fqa, T9) = [ Z(X/Fq,6T) = Z(X/Fq, T)°.

£d=1

Comparing poles, we conclude d = 1.

Ol
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Functional equation for curves

Remark
By inspecting the above calculation of Z(X /Fq, T), using
Riemann-Roch, one can deduce the functional equation €

Z(X[Fq, 37) = 49T 292(X /B, T).
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Cohomological interpretation of Weil conjectures

Let X be a variety of dimension d over k = Fq, X = X x k and
let F: X — X be the Frobenius morphism. Fix a prime

| # p = char(k). There exist I-adic étale cohomology groups
(with compact support)

H(X) = H\(X,Q), i=0,...,2d

which are finite dimensional vector spaces over Q, _
so that F induces vector space morphisms F* : H'(X) — H'(X)
and we have a Lefschetz fixed-point formula

2d

[X(Eqn)| = [Fix(FM)| = Y _(=1)tr(F*"|H'(X)).
i=0
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Weil rationality using cohomology

Tn 2d
Z(X,T) =exp Z > (=Dt (F|H (X))
n>1 i=0
2d Tn (71)1
%N i
H exp ZtrF |H(X ))n
i=0 n>1
2d

[det(1 - F*T|H"(X))} v

I
o

an alternating product of the characteristic polynomials of the
Frobenius on cohomology.
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