CW9 Solutions

1. (a) Following Euclid's algorithm:

$$285 = 2 \cdot 117 + 51$$

$$117 = 2 \cdot 51 + 15$$

$$51 = 3 \cdot 15 + 6$$

$$15 = 2 \cdot 6 + 3$$

$$6 = 2 \cdot 3 + 0$$

so $\gcd(285,117) = \gcd(117,51) = \gcd(51,15) = \gcd(15,6) = \gcd(6,3) = \gcd(3,0) = 3$. From the above equations,

$$3 = 15 - 2 \cdot 6$$

$$= 15 - 2 \cdot (51 - 3 \cdot 15)$$

$$= (-2) \cdot 51 + 7 \cdot 15$$

$$= (-2) \cdot 51 + 7(117 - 2 \cdot 51)$$

$$= 7 \cdot 117 - 16 \cdot 51$$

$$= 7 \cdot 117 - 16(285 - 2 \cdot 117)$$

$$= (-16) \cdot 285 + 39 \cdot 117$$

so the equation holds with x = (-16), y = 39.

CHECK: $39 \cdot 117 - 16 \cdot 285 = 4563 - 4560 = 3$ so we didn't make a mistake!

(b) In this case, we have

$$4199 = 2 \cdot 1771 + 657$$

$$1771 = 2 \cdot 657 + 457$$

$$657 = 1 \cdot 457 + 200$$

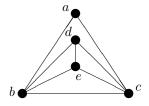
$$457 = 2 \cdot 200 + 57$$

$$200 = 3 \cdot 57 + 29$$

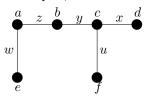
$$57 = 1 \cdot 29 + 28$$

$$29 = 1 \cdot 28 + 1$$

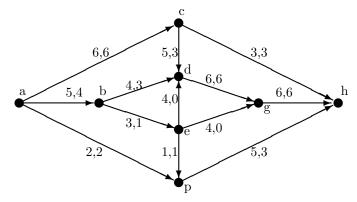
$$28 = 28 \cdot 1$$


so gcd(4199, 1771) = 1.

Going backwards,


$$\begin{array}{lll} 1 &=& 1\cdot 29 - 1\cdot 28 = 1\cdot 29 - 1\cdot (57 - 1\cdot 29) \\ &=& (-1)\cdot 57 + 2\cdot 29 = (-1)\cdot 57 + 2\cdot (200 - 3\cdot 57) \\ &=& 2\cdot 200 - 7\cdot 57 = 2\cdot 200 - 7\cdot (457 - 2\cdot 200) \\ &=& (-7)\cdot 457 + 16\cdot 200 = (-7)\cdot 457 + 16\cdot (657 - 1\cdot 457) \\ &=& 16\cdot 657 - 23\cdot 457 = 16\cdot 657 - 23\cdot (1771 - 2\cdot 657) \\ &=& (-23)\cdot 1771 + 62\cdot 657 = (-23)\cdot 1771 + 62\cdot (4199 - 2\cdot 1771) \\ &=& 62\cdot 4199 - 147\cdot 1771. \end{array}$$

CHECK: $62 \cdot 4199 - 147 \cdot 1771 = 260338 - 260337 = 1$ so we didn't make a mistake!


2. G is as follows:

- 3. (a) $\{a, z, b, y, c, x, d\}$ (among many others)
 - (b) $\{a, w, e, t, f, u, c, y, b, z, a\}$ (or the same thing backwards),
 - (c) Plenty of examples, one such is

- 4. (a) $\{a,d,f,i,b,h,j\}$ [the algorithm presented in lectures should be used and described clearly].
 - (b) No the connected component containing b is not the whole graph.
- 5. (a) a is a source and h is a sink.
 - (b) Which (if any) of the following functions f are flows on N?
 - (i) Not a flow symmetry broken at vertex e.
 - (ii) Not a flow gh over capacity.
 - (iii) Not a flow symmetry broken at vertex e.
 - (c) The min cut is 12, formed by ch, gh, ep and ap. Therefore the max flow is 12 [we are using the Max-Flow Min-Cut Theorem]. One solution is the following:

