
8.1

Graphs
Syllabus

Graph and tree theory;
applied to networks
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8.2

A graph is a kind of diagram.
It consists of vertices which are drawn as points or blobs,
and edges which are drawn as lines from a vertex to a vertex.

✈ ✈ ✈
✣✢
✤✜

We say an edge that goes from vertex u to vertex v

has endpoints u and v.
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8.3

Example:

vu ✈✈

✈✈ xw

This graph has four vertices u, v, w, x

and four edges uv, vx, wx and uw.
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8.4

Example:

u ✒✑
�✏
✈

❆
❆

❆
❆

❆
❆

❆

✈✁
✁
✁
✁
✁
✁
✁

✈ wv

This graph has three vertices u, v, w,
and five edges.
One edge uu is a loop,
and two edges together form a double edge from v to w.
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8.5

The adjacency matrix of a graph G is a table:
the vertices are listed along the top and down the left.
The entry in row u and column v is the number of edges
with endpoints u and v.

The adjacency matrix of the graph in 8.4 is

u v w

u 1 1 1

v 1 0 2

w 1 2 0
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8.6

A path in a graph is a list of vertices and edges,

v0, e0, v1, e1, . . . , en−1, vn

where each ei is an edge with endpoints vi and vi+1,
the edges e0, . . . , en−1 are all different, and
the vertices v0, . . . , vn are all different except that v1 and vn

can be the same.
When v1 = vn, we say that the path is a cycle.

The length of a path is the number of edges in it;
so the path above has length n.
The path is from v0 to vn, and these vertices are its endpoints.
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8.7

Example: u ✒✑
�✏

a✈
bc

❆
❆

❆
❆

❆
❆

❆

✈✁
✁
✁
✁
✁
✁
✁

✈ d
wv

e

v, d, w, b, u, c, v

is a cycle of length 3.

u, c, v, e, w

is a path of length 2 but not a cycle.
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8.8

Let G be a graph.

We say that two vertices u, v of G are linked to each other
if there is a path with endpoints u and v.

A vertex u is always linked to itself, because u counts
as a path of length 0 with endpoints u and u.
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8.9

Writing uRv for

‘u is linked to v’,

R is an equivalence relation on the set of vertices of G.

Each equivalence class of R, together with the edges
between vertices in the class,
is called a connected component of G.

A graph is called connected if it has just one connected
component.
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8.10

Example ✈

❆
❆

❆
❆

❆
❆

❆

✈✁
✁
✁
✁
✁
✁
✁

✈

✈

❆
❆

❆
❆

❆
❆

❆

✈✁
✁
✁
✁
✁
✁
✁

✈ ✈ ✈
has three connected components, so it is not connected.
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8.11

To find a connected component

When the graph is drawn on a page, we can just see the
connected components.

(Important and difficult question: How do our brains do
this?
Designers of automatic pilots (for example) would like to
know.)

When the graph is described by an adjacency matrix
and the answer has to be found by a computer,
we need a precise method.
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8.12

Given a vertex v in a graph G:

1. Put C = {v}.

2. Let C ′ be the set of all vertices joined by an edge to some
vertex in C.
If C ′ is a subset of C, return C.
If C ′ is not a subset of C, put C := C ∪ C ′ and repeat step
2.

The connected component of G containing v is the set of
vertices returned, together with all the edges joining them.
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8.13

Example

s t u v w x y z

s 0 0 0 0 0 0 1 0

t 0 0 0 0 0 1 1 0

u 0 0 0 1 1 0 0 1

v 0 0 1 1 1 0 0 1

w 0 0 1 1 0 0 0 1

x 0 1 0 0 0 1 1 0

y 1 1 0 0 0 1 0 0

z 0 0 1 1 1 0 0 0
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8.14

Steps calculating the connected component containing t:

1. C = {t}.

2. C ′ = {x, y}. We put C = {t, x, y}.

3. C ′ = {s, t, x, y}. We put C = {s, t, x, y}.

4. C ′ = {s, t, x, y}. So we return {s, t, x, y}.
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8.15

We can check this result by drawing the graph from its
adjacency matrix 8.13:

✈
✒✑
�✏

v
✁
✁
✁
✁
✁
✁
✁
✁

�
�

�
�

✈
w

✈
z❅

❅
❅

❅

✈ u
❆
❆
❆
❆
❆
❆
❆
❆ ✈

t
�

�
�

�

✈
x ✒✑

�✏

✈
y❅

❅
❅

❅

✈ s
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8.16

We say that a graph H is a subgraph of G if

(a) Every vertex of H is also a vertex of G, and

(b) every edge of H is also an edge of G,
with the same endpoints.

For example:

• Every graph is a subgraph of itself.

• Every connected component of G is a subgraph of G.
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8.17

A tree is a connected graph with no cycles of length > 0.
(For brevity we just say ‘with no cycles’
and ignore cycles of length 0.)

In a tree, if u and v are distinct vertices
then there is exactly one path from u to v.
Also every graph which has this property and has no cycles
of length 1 is a tree.
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8.18

Examples of trees

(a)

✈

(b)

❅
❅�

�
✈

✈
✈

✈

(c)
r✈

�
�

❅
❅✈ ✈

✈ ✈ ✈ ✈✁
✁
✁✁

❆
❆

❆❆

✈ ✈ ✈ ✈
The tree on the right has one vertex picked out, marked r.
A tree with a ‘distinguished vertex’ is called a rooted tree.
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8.19

Suppose G is a connected graph and e is an edge of G.
and taking away the edge e makes G not connected.
Then we say that taking away e disconnects the graph.

Suppose we keep taking away edges without disconnecting
the graph, for as long as we can. The graph H that is left

• is a subgraph of G,

• has the same vertices as G, and

• is a tree.

A graph H with these properties is a spanning tree of G.
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8.20
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8.21

Example: The wiring diagram of the power supply in a
house. ✈

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

✈
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅

✈

✈ ✈

✈ ✈ ✈��
�

�
�

�
�

�
�

�

✈✂
✂
✂
✂
✂✂

A spanning tree will still bring power to all the same
sockets. So why do we use ring mains?
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8.22

From Exam 2004: Find all the spanning trees in the
following graph.

✈

✈ ✈
✈

�
�

�
�

�

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

❝
❝

❝
❝

❝

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
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8.23
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�

❆
❆
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✁
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❆




 


✁
✁
❝




 


�

❆
❆
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�




 


✁
✁




 



❝




 

❆

❆

There are more than you expected.
It pays to be systematic in looking for them.
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8.24

Digraphs

A directed graph, or for short a digraph, is the same as a graph,
except that each edge has a direction marked by an arrow.

A directed path in a digraph is a path

v0, e0, v1, e1, . . . , en−1, vn

where each edge ei runs forwards from vi to vi+1.
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8.25

Example:

u ✒✑
�✏
✈

❆
❆

❆
❆

❆
❆

❆❑

✈✁
✁
✁
✁
✁
✁
✁✕

✲✛✈ wv

There is no need for an arrow on the loop at u.
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8.26

The adjacency matrix of a digraph G has in row u and column
v the number of edges that go forwards
from vertex u to vertex v.

The adjacency matrix of the digraph in 8.23:

u v w

u 1 0 0

v 1 0 1

w 1 1 0
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8.27

Networks

A network is a connected digraph N where each edge e has a
number c(e) � 0 associated to it, called the capacity of e.

The sources of N are the vertices that have no arrows going
to them,
and the sinks of N are the vertices that have no arrows going
from them.
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8.28

A flow on a network is a function f whose domain is the set
of edges, such that

• for each edge e, 0 � f(e) � c(e);

• at each vertex v that is neither a source nor a sink,
the sum of f(e) for e going from v is equal to
the sum of f(e) for edges e going to v.

Think of oil flowing along the edges. It can’t flow
backwards; an edge can’t carry more than its capacity;
and oil can’t pile up or appear from nowhere at a vertex
that is neither a source nor a sink.
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8.29

Example In this network the first number on each edge is
the capacity, the second is the flow.

✈✟✟✟✟✯4, 3

❍❍❍❍❥11, 4

✈

✈

✟✟✟✟✯5, 1

❍❍❍❍❥2, 2

✟✟✟✟✯3, 2

❍❍❍❍❥8, 2

✈

✈

✈

❄
3, 0

✻
4, 0

❍❍❍❍❍❍❍❍❥

8, 1

✲6, 4

✟✟✟✟✟✟✟✟✯

4, 2

✈
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8.30

The value of the flow is the sum of the values of flows on
edges leading out of the sources.
This is equal to the sum of the values of flows on edges
leading into the sinks.

In the example above, there are just one source and just one
sink.
The value of the flow at the source is 3 + 4 = 7.
The value of the flow at the sink is 1 + 4 + 2 = 7.
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8.31

There is spare capacity all the way along the top of the
network above.
We can increase the flow by 1:

✈✟✟✟✟✯4,4

❍❍❍❍❥11, 4

✈

✈

✟✟✟✟✯5,2

❍❍❍❍❥2, 2

✟✟✟✟✯3, 2

❍❍❍❍❥8, 2

✈

✈

✈

❄
3, 0

✻
4, 0

❍❍❍❍❍❍❍❍❥

8,2

✲6, 4

✟✟✟✟✟✟✟✟✯

4, 2

✈
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8.32

There is still spare capacity of 2 all the way along the bottom:

✈✟✟✟✟✯4, 4

❍❍❍❍❥11,6

✈

✈

✟✟✟✟✯5, 2

❍❍❍❍❥2, 2

✟✟✟✟✯3, 2

❍❍❍❍❥8,4

✈

✈

✈

❄
3, 0

✻
4, 0

❍❍❍❍❍❍❍❍❥

8, 2

✲6, 4

✟✟✟✟✟✟✟✟✯

4,4

✈
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8.33

We can squeeze one more unit along a path through the
middle:

✈✟✟✟✟✯4, 4

❍❍❍❍❥11,7

✈

✈

✟✟✟✟✯5, 2

❍❍❍❍❥2, 2

✟✟✟✟✯3,3

❍❍❍❍❥8, 4

✈

✈

✈

❄
3, 0

✻
4, 0

❍❍❍❍❍❍❍❍❥

8, 2

✲6,5

✟✟✟✟✟✟✟✟✯

4, 4

✈
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8.34

And one more unit by a path that goes down and then up
again:

✈✟✟✟✟✯4, 4

❍❍❍❍❥11,8

✈

✈

✟✟✟✟✯5, 2

❍❍❍❍❥2, 2

✟✟✟✟✯3, 3

❍❍❍❍❥8,5

✈

✈

✈

❄
3, 0

✻
4,1

❍❍❍❍❍❍❍❍❥

8, 2

✲6,6

✟✟✟✟✟✟✟✟✯

4, 4

✈
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8.35

Can we squeeze a larger flow through this network?

Not by pushing larger amounts forward along directed
edges.

But we can if we allow ourselves to push a smaller amount
backwards along a directed edge:
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8.36

And one more unit by a path that goes down and then up
again:

✈✟✟✟✟✯4, 4

❍❍❍❍❥11,10

✈

✈

✟✟✟✟✯5,4

❍❍❍❍❥2,0

✟✟✟✟✯3, 3

❍❍❍❍❥8,7

✈

✈

✈

❄
3, 0

✻
4,3

❍❍❍❍❍❍❍❍❥

8,4

✲6, 6

✟✟✟✟✟✟✟✟✯

4, 4

✈
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8.37

The flow is now 4 + 10 = 14 at the source and 4 + 6 + 4 = 13

at the sink, so its value is 14.

To check that this is the maximum possible, we look for a
cut of value 14.
A cut is a line cutting some edges of the network, to separate
the sources from the sinks,
and its value is the sum of the capacities of edges crossing
the cut from left to right.
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8.38

A cut of value 14 (= 4 + 0 + 0 + 6 + 4)

✈✟✟✟✟✯4, 4

❍❍❍❍❥11, 10

✈

✈

✟✟✟✟✯5, 4

❍❍❍❍❥2, 0

✟✟✟✟✯3, 3

❍❍❍❍❥8, 7

✈

✈

✈

❄
3, 0

✻
4, 3

❍❍❍❍❍❍❍❍❥

8, 4

✲6, 6

✟✟✟✟✟✟✟✟✯

4, 4

✈
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8.39

The max-flow min-cut theorem says that for every network
there is a unique number f such that

(1) there is a flow of value f through the network;

(2) there is a cut through the network with value f .

This number f is the value of the maximum flow that we
can get through the network.
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