
2.1

Binary arithmetic
Syllabus

Binary numbers and strings,
arithmetic modulo powers of 2

42

2.2

The set of natural numbers, N, consists of the numbers

1, 2, 3,

The set of integers contains 0 and the negative numbers too:

. . . ,−3,−2,−1, 0, 1, 2, 3, . . .

So the natural numbers are the same as the positive integers.

43

2.3

Computers think of the natural numbers differently from us:

• We use symbols 0, 1, . . . , 9,
but computers use just the two symbols 0, 1
(i.e. we use decimal numbers, computers use binary).

• In a computer, all numbers have a fixed length, e.g. 8
symbols.
(In fact computers sometimes use ‘short’ numbers of one
length and ‘long’ numbers of another length, depending
on how they are programmed.)

44

2.4

Decimal Binary Fixed-length binary

1 1 0001

2 10 0010

3 11 0011

4 100 0100

5 101 0101

6 110 0110

7 111 0111

8 1000 1000
...

...
...

45

2.5

At 16 the binary numbers of length 4 run out and we have to
go back to 0000, which represents 0:

Decimal Binary Fixed-length binary

15 1111 1111

16 10000 0000

17 10001 0001
...

...
...

So 0, 16, 32, 48 etc. all have the same representation
in binary numbers of length 4.

46

2.6

Notice the powers of 2:

Decimal Binary

1 = 20 1

2 = 21 10

4 = 22 100

8 = 23 1000

16 = 24 10000

32 = 25 100000

64 = 26 1000000

128 = 27 10000000
...

...

47

2.7

So the binary numbers of fixed length n come back to 0 first
at 2n, which is 1 followed by n 0s.

In binary notation with fixed length n, we identify each
number k with

k + 2n, k + 2 × 2n, k + 3 × 2n etc. etc..

We describe this situation by saying that the numbers in
binary notation with fixed length n are modulo 2n.

Except where we say otherwise, we shall assume the
numbers that we discuss are not modulo anything.

48

2.8

Addition of binary numbers is the same as addition of
decimal numbers,
except that we carry at 2 (i.e. binary 10) instead of at 10,
and we use the addition table for binary digits:

+

1 1 10

1 0 1

0 1 1

0 0 0

49

2.9

Example

110011

+ 11101

’’’’’

1010000

The rest of these notes won’t show the carries
(they are awkward to print).

50

2.10

Advice: Adding three or more binary numbers at once is
dangerous,
because we may have to carry into two or more columns at
once, and the result is confusing.
It’s best to add several binary numbers one at a time:

51

2.11

1111

+ 111

10110

+ 1110

100100

52

2.12

Multiplication of binary numbers

Multiplication of binary digits is easy:

×
1 1 1

1 0 0

0 1 0

0 0 0

Same as the table for ∧!

53

2.13

Multiplication of binary numbers is essentially the same as
multiplication of decimals.

For example to multiply 1101 by 1011,
we express 1011 as

1 + 10 + 1000,

we multiply 1101 by each of these in turn,
and we add up the results.

Notice that putting a 0 at the end of a binary number
is the same as multiplying it by 2.

54

2.14

To study this multiplication, we express it as follows:

1101

× 1011

1101 (since 1011 ends in 1)

11010 (since 101 ends in 1)

(110100) (since 10 ends in 0)

1101000 (since 1 ends in 1)

10001111

Normally one leaves out the parts in brackets.

55

2.15

Compare with the same calculation in decimal numbers:

13

× 11

13 (since 11 is odd)

26 (since 5 = (11 − 1)/2 is odd)

(52) (since 2 = (5 − 1)/2 is even)

104 (since 1 = 2/2 is odd)

143

56

2.16

Binary multiplication using decimal numbers, as above,
is still used in some parts of Russia and is known as
Russian peasant multiplication. It is quite efficient.
Normally we would write the calculation just as

57

2.17

13

× 11

13 11

26 5

(52) 2

104 1

143

58

2.18

The idea of Russian peasant multiplication is that
we can use only the operations of binary arithmetic
even when we write the numbers in decimal notation.

This idea is very useful, because it gives us a way of
translating from decimal notation to binary, or vice versa.

To convert binary m to a decimal number, work out 1 × m

using decimal numbers on the left and binary on the right.

To convert decimal n to a binary number, work out 1 × n

using binary numbers on the left and decimal on the right.

59

2.19

Example: We convert 1101101 to decimal notation.

1 1101101

(2) 110110

4 11011

8 1101

(16) 110

32 11

64 1

109

60

2.20

Example: We convert 291 to binary notation.

1 291

10 145

(100) 72

(1000) 36

(10000) 18

100000 9

(1000000) 4

(10000000) 2

100000000 1

100100011

61

2.21

To see how to subtract binary numbers,
we need to see first how to subtract decimal numbers.
(You may have learned another method
that doesn’t adapt smoothly to binary numbers.)

How do we subtract 11 from 100 and get 89?

62

2.22

Example

A B C

(i) 1 0 0

(ii) − 1 1

(The labels A, B, C, (i), (ii) are so that we can
talk about the rows and columns.
They are not part of the calculation.)

63

2.23

We try to take 1 away from 0 in column C.
We can’t do it, so we borrow 10 from column B.
To mark this, we write a small 1 so that the 0 turns into 10:

A B C

(i) 1 0 10

(ii) − 1 1

64

2.24

Now we can take 1 from 10 in column C and get 9:

A B C

(i) 1 0 10

(ii) − 1 1

9

65

2.25

Next we go to column B.
We must take two numbers away from the 0 in row (i):

• we must take away the 1 in row (ii),

• we must take away 1 to pay for the 10
that we put in column C.

So we must take away 1 + 1 = 2 from 0.

66

2.26

Again we borrow 10 from column A:

A B C

(i) 1 10 10

(ii) − 1 1

9

67

2.27

Taking away the 2 from 10 gives 8:

A B C

(i) 1 10 10

(ii) − 1 1

8 9

68

2.28

Finally we look at column A.
We must take away from the 1 in row (i):

• 0 from row (ii),

• 1 to pay for the 10 borrowed in column B.

So we take 0 + 1 = 1 away from 1
This gives the answer 089, i.e. 89.

69

2.29

The same calculation works in binary,
except that the 10 in row (i) of columns B and C

means binary 10, i.e. 2,
and then 2 − 2 = 0 instead of 8:

A B C

(i) 1 10 10

(ii) − 1 1

0 0 1

70

2.30

Example:

1011100

− 1001111

0001101

71

2.31

When we subtract a larger number from a smaller number,
we get a negative answer.
So as in decimals, we subtract the smaller from the larger
and put a − sign at the front.

For example

1001111 − 1011100 = −1101

by the previous calculation.

72

2.32

When we calculate with binary numbers of length n,
subtracting any number from a string of n 1’s is very easy:

11111111

01001101

10110010

The bottom line is the opposite of the second.
We say the bottom number is the ones complement
of the second number.

73

2.33

A binary number of length n is never changed by adding

10 . . . 0 (n 0’s)

But

100 = 11 + 1,

1000 = 111 + 1,

10000 = 1111 + 1

and so on.

So for example, calculating modulo 25, we can always add
11111 + 1 without changing the answer.

74

2.34

Example. We calculate 1001111 − 1011100 modulo 27.
First note that 1011100 is bigger than 1001111,
so the answer will be negative unless we add 27.

1001111 − 1011100 = 1001111 + (1111111 − 1011100) + 1

= 1001111 + 0100011 + 1

= 1110010 + 1

= 1110011

75

2.35

In the next example we subtract a larger number
from a smaller number modulo 26.

101001 − 110000 = 101001 + (111111 − 110000) + 1

= 101001 + 001111 + 1

= 111000 + 1

= 111001

76

