Probability II. Solutions to Problem Sheet 9.

Part 1.

1. Since X and Y are independent,

$$
f_{X, Y}(x, y)=\theta^{2} x e^{-\theta x} \theta^{2} y e^{-\theta y}=\theta^{4} x y e^{-\theta(x+y)}
$$

for $x>0$ and $y>0$. Since $U=X$ and $V=X+Y$, the inverses are $X=U$ and $Y=V-U$. Then

$$
f_{U, V}(u, v)=\theta^{4} u(v-u) e^{-\theta v} \times\left|\operatorname{det}\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\right|=\theta^{4} u(v-u) e^{-\theta v}
$$

The ranges $x>0$ and $y>0$ become $u>0$ and $v-u>0$, i.e. $0<u<v<\infty$. Hence

$$
\begin{aligned}
f_{V}(v) & =\int_{0}^{v} \theta^{4} u(v-u) e^{-\theta v} d u=\left[\theta^{4} e^{-\theta v}\left(\frac{v u^{2}}{2}-\frac{u^{3}}{3}\right)\right]_{u=0}^{u=v}=\theta^{4} e^{-\theta v}\left(\frac{v^{3}}{2}-\frac{v^{3}}{3}\right) \\
& =\frac{\theta^{4} v^{3} e^{-\theta v}}{3!}
\end{aligned}
$$

Therefore $V \sim \operatorname{Gamma}(\theta, 4)$. Then (for each $v>0$),

$$
f_{U \mid V}(u \mid v)=\frac{f_{U, V}(u, v)}{f_{V}(v)}=\frac{6 u(v-u)}{v^{3}}
$$

for $0<u<v$.
2. Since $X \sim \operatorname{Exp}(1)$ independent of $Y \sim \operatorname{Exp}(1), f_{X, Y}(x, y)=e^{-(x+y)}$ for $x>0$ and $y>0$.

Since $U=\frac{X}{Y}$ and $V=X+Y, X=U Y$ so that $V=Y(1+U)$. Therefore $Y=\frac{V}{(1+U)}$ and $X=\frac{U V}{(1+U)}=V\left(1-\frac{1}{(1+U)}\right)$. Then the ranges $x>0$ and $y>0$ become $\frac{u v}{(1+u)}>0$ and $\frac{v}{(1+u)}>0$, so that $u>0$ (hence $\left.(1+u)>0\right)$ and therefore $v>0$. Now

$$
\operatorname{det}\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
\frac{v}{(1+u)^{2}} & \frac{u}{(1+u)} \\
-\frac{v}{(1+u)^{2}} & \frac{1}{(1+u)}
\end{array}\right)=\frac{v}{(1+u)^{2}}
$$

Therefore, for $u>0$ and $v>0$,

$$
f_{U, V}(u, v)=e^{-v} \times \frac{v}{(1+u)^{2}}=\left(v e^{-v}\right) \times\left((1+u)^{-2}\right)
$$

So the ranges are not dependent and the joint p.d.f. splits as shown into $g(u)=(1+u)^{-2}$ times $h(v)=v e^{-v}$. Therefore U and V are independent.

Then $f_{U}(u)=C(1+u)^{-2}$ for $u>0$ and $f_{V}(v)=\frac{1}{C} v e^{-v}$ for $v>0$. The latter is clearly the p.d.f. of a $\operatorname{Gamma}(1,2)$ distribution so that $C=1$. Hence $f_{U}(u)=(1+u)^{-2}$ for $u>0$ and $f_{V}(v)=v e^{-v}$ for $v>0$.

Part 2.

3. $X \mid Y=y \sim \operatorname{Exp}(y)$. Hence $E[X \mid Y=y]=\frac{1}{y}$ and $\operatorname{Var}(X \mid Y=y)=\frac{1}{y^{2}}$. Now $E[X]=E[E[X \mid Y]]=E\left[Y^{-1}\right]$ and

$$
\begin{aligned}
\operatorname{Var}(X) & =E[\operatorname{Var}(X \mid Y)]+\operatorname{Var}(E[X \mid Y]) \\
& =E\left[Y^{-2}\right]+\operatorname{Var}\left(Y^{-1}\right)=E\left[Y^{-2}\right]+E\left[Y^{-2}\right]-\left(E\left[Y^{-1}\right]\right)^{2} \\
& =2 E\left[Y^{-2}\right]-\left(E\left[Y^{-1}\right]\right)^{2}
\end{aligned}
$$

So we need to find $E\left[Y^{-1}\right]$ and $E\left[Y^{-2}\right]$. Using the result that a gamma p.d.f. integrates to one, we obtain

$$
\begin{aligned}
& E\left[Y^{-1}\right]=\int_{0}^{\infty} y^{-1} \frac{\theta^{3} y^{2} e^{-\theta y}}{2} d y=\frac{\theta}{2} \int_{0}^{\infty} \theta^{2} y e^{-\theta y} d y=\frac{\theta}{2} \\
& E\left[Y^{-2}\right]=\int_{0}^{\infty} y^{-2} \frac{\theta^{3} y^{2} e^{-\theta y}}{2} d y=\frac{\theta^{2}}{2} \int_{0}^{\infty} \theta e^{-\theta y} d y=\frac{\theta^{2}}{2}
\end{aligned}
$$

Therefore $E[X]=\frac{\theta}{2}$ and $\operatorname{Var}(X)=2\left(\frac{\theta^{2}}{2}\right)-\left(\frac{\theta}{2}\right)^{2}=\frac{3 \theta^{2}}{4}$
The joint p.d.f. for X and Y is just

$$
f_{X, Y}(x, y)=f_{X \mid Y}(x \mid y) f_{Y}(y)=y e^{-y x} \frac{\theta^{3} y^{2} e^{-\theta y}}{2}
$$

for $x>0$ and $y>0$. Hence, for $x>0$, using the result that a gamma p.d.f. integrates to one,

$$
f_{X}(x)=\int_{0}^{\infty} \frac{\theta^{3} y^{3} e^{-(\theta+x) y}}{2} d y=\frac{3 \theta^{3}}{(\theta+x)^{4}} \int_{0}^{\infty} \frac{(\theta+x)^{4} y^{3} e^{-(\theta+x) y}}{3!} d y=\frac{3 \theta^{3}}{(\theta+x)^{4}}
$$

Hence $f_{X}(x)=\frac{3 \theta^{3}}{(\theta+x)^{4}}$ for $x>0$. Now

$$
\begin{aligned}
& E[X+\theta]=\int_{0}^{\infty} \frac{3 \theta^{3}}{(\theta+x)^{3}} d x=\left[-\frac{3 \theta^{3}}{2(\theta+x)^{2}}\right]_{x=0}^{x=\infty}=\frac{3 \theta}{2} \\
& E\left[(X+\theta)^{2}\right]=\int_{0}^{\infty} \frac{3 \theta^{3}}{(\theta+x)^{2}} d x=\left[-\frac{3 \theta^{3}}{(\theta+x)}\right]_{x=0}^{x=\infty}=3 \theta^{2}
\end{aligned}
$$

So $E[X]=E[X+\theta]-\theta=\frac{\theta}{2}$ and

$$
\operatorname{Var}(X)=\operatorname{Var}(X+\theta)=E\left[(X+\theta)^{2}\right]-(E[X+\theta])^{2}=3 \theta^{2}-\frac{9 \theta^{2}}{4}=\frac{3 \theta^{2}}{4}
$$

These are the same results as obtained previously.
4. $\quad M_{X}(s)=M_{X, Y}(s, 0)=\frac{1}{(1-s)^{2}}$. You can either recognise this as the m.g.f. of $\operatorname{Gamma}(1,2)$ and state the mean and variance $(E[X]=2$ and $\operatorname{Var}(X)=2)$ or differentiate the m.g.f. to obtain the results. $M_{X}^{\prime}(s)=2(1-s)^{-3}$ so that $E[X]=M_{X}^{\prime}(0)=2$ and $M_{X}^{\prime \prime}(s)=6(1-s)^{-4}$ so that $E\left[X^{2}\right]=M_{X}^{\prime \prime}(0)=6$ and hence $\operatorname{Var}(X)=6-4=2$.
$M_{Y}(t)=M_{X, Y}(0, t)=\frac{1}{\left(1-t^{2}\right)}$. This is the m.g.f. for a double exponential but we haven't found the mean and variance previously. $M_{Y}^{\prime}(t)=2 t\left(1-t^{2}\right)^{-2}$ so that $E[Y]=M_{Y}^{\prime}(0)=0$ and $M_{Y}^{\prime \prime}(t)=2\left(1-t^{2}\right)^{-2}+8 t^{2}\left(1-t^{2}\right)^{-3}$ so that $E\left[Y^{2}\right]=M_{Y}^{\prime \prime}(0)=2$ and hence $\operatorname{Var}(X)=$ $2-0=2$.

$$
\frac{\partial^{2} M_{X, Y}(s, t)}{\partial s \partial t}=\frac{\partial}{\partial s} 2 t\left((1-s)^{2}-t^{2}\right)^{-2}=8 t(1-s)\left((1-s)^{2}-t^{2}\right)^{-3}
$$

Hence $E[X Y]=0$. Therefore $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=0$ and so $\rho(X, Y)=0$. Observe that in this case X and Y are not independent but have coefficient of correlation zero.

$$
\begin{aligned}
M_{U, V}(s, t) & =E\left[e^{s(X+Y)+t(X-Y)}\right]=E\left[e^{(s+t) X+(s-t) Y}\right] \\
& =M_{X, Y}(s+t, s-t)=\frac{1}{(1-s-t)^{2}-(s-t)^{2}} \\
& =\frac{1}{(1-s-t+s-t)(1-s-t-(s-t))}=\frac{1}{(1-2 t)(1-2 s)} \\
& =\left((1-2 s)^{-1}\right)\left((1-2 t)^{-1}\right)
\end{aligned}
$$

So the joint m.g.f. splits into (a function of s only) times (a function of t only). Therefore U and V are independent and $M_{U}(s)=M_{U, V}(s, 0)=(1-2 s)^{-1}$ so that $U \sim \operatorname{Exp}(1 / 2)$ and $M_{V}(t)=M_{U, V}(0, t)=(1-2 t)^{-1}$ so that $V \sim \operatorname{Exp}(1 / 2)$.

