## Probability II. Solutions to Problem Sheet 7.

Part 1. 1. X has p.d.f.  $f_X(x) = 2\theta x e^{-\theta x^2}$  for x > 0 and  $f_X(x)$  is zero elsewhere.

 $Y = X^2$  has inverse  $X = \sqrt{Y}$ . The range for Y has end-points 0 and infinity. Hence for  $0 < y < \infty$ ,

$$f_Y(y) = f_X(\sqrt{y}) \left| \frac{d\sqrt{y}}{dy} \right| = 2\theta \sqrt{y} e^{-\theta y} \times \frac{1}{2\sqrt{y}} = \theta e^{-\theta y}$$

 $f_Y(y) = 0$  elsewhere. This is just the p.d.f. of  $Exp(\theta)$ .

**2.**  $X \sim N(0,1)$  and Y = |X|.

 $F_Y(y) = 0$  for  $y \le 0$ . For y > 0

$$F_Y(y) = P(Y \le y) = P(|X| \le y) = P(-y \le X \le y) = F_X(y) - F_X(-y)$$

Now differentiate with respect to y. For y > 0,

$$f_Y(y) = f_X(y) + f_X(-y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^2} + \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^2} = \frac{2}{\sqrt{2\pi}}e^{-\frac{1}{2}y^2}$$

 $f_Y(y) = 0$  elsewhere.

3. Let X and Y have joint p.d.f.  $f_{X,Y}(x,y) = C$  for 0 < x < 2 and 0 < y < 2

The joint p.d.f. is constant over its support and the area of the support is 4. Hence 1=4C and so  $C=\frac{1}{4}$ .

Also  $f_X(x)$ =area above the line X=x within the support of the joint p.d.f. so that  $f_X(x)=2C=\frac{1}{2}$  for 0< x<2 and is zero elsewhere, i.e.  $X\sim U(0,2)$ .

Similarly  $f_Y(y)$ =area above the line Y = y within the support of the joint p.d.f. so that  $f_Y(y) = 2C = \frac{1}{2}$  for 0 < y < 2 and is zero elsewhere, i.e.  $Y \sim U(0, 2)$ .









For (i)  $0 < z \le 2$ ,  $P(X + Y \le z) = C$  times the area shaded A, so that  $P(X + Y \le z) = C \times \frac{1}{2}z^2 = \frac{1}{8}z^2$ .

For (ii) 2 < z < 4,  $P(X + Y \le z) = C$  times the area shaded B, so that  $P(X + Y \le z) = C \times \left(4 - \frac{1}{2}(2 - (z - 2))^2\right) = 1 - \frac{1}{8}(4 - z)^2$ .

If (iii) 
$$z \le 0$$
 then  $P(X + Y \le z) = 0$  and if (iv)  $z \ge 4$  then  $P(X + Y \le z) = 1$ .

This gives the value of the c.d.f. for Z since  $F_Z(z) = P(Z \le z) = P(X + Y \le z)$ . So differentiating with respect to z we obtain

$$f_Z(z) = \frac{1}{4}z$$
 for  $0 < z \le 2$ ,  $f_Z(z) = \frac{1}{4}(4-z)$  if  $2 < z < 4$  and  $f_Z(z) = 0$  elsewhere.

**4.** X and Y have joint p.d.f.  $f_{X,Y}(x,y) = C$  for 0 < x < 2y < 2 and  $f_{X,Y}(x,y) = 0$  elsewhere.



The support of the joint p.d.f. lies in the region between the lines X=0, 2Y=X and 2Y=2, i.e. X=0,  $Y=\frac{X}{2}$  and Y=1. The area of the support is 1. Hence  $1=C\times 1$  so that C=1.

 $f_X(x)$ =area above the line X=x within the support of the joint p.d.f. For 0 < x < 2, the length of the line is  $\left(1-\frac{x}{2}\right)$  and hence  $f_X(x) = C\left(1-\frac{x}{2}\right) = \left(1-\frac{x}{2}\right)$ .  $(f_X(x) = 0$  elsewhere.)

 $f_Y(y)$ =area above the line Y=y within the support of the joint p.d.f. For 0 < y < 1, the length of this line is 2y so that  $f_Y(y) = C \times 2y = 2y$ .  $(f_Y(y) = 0$  elsewhere.)



For 0 < z < 2,  $P(2Y - X \le z)$  is just C times the area shaded A. This area is just  $1 - \frac{1}{2} \left(1 - \frac{z}{2}\right) (2 - z)$ . Hence

$$P(2Y - X \le z) = C \times \left(1 - \frac{1}{2}\left(1 - \frac{z}{2}\right)(2 - z)\right) = 1 - \frac{1}{2}\left(1 - \frac{z}{2}\right)(2 - z) = 1 - \frac{1}{4}(2 - z)^2$$

$$P(2Y-X\leq z)=0$$
 if (i)  $z\leq 0$  and  $P(2Y-X\leq z)=1$  if (ii)  $z\geq 2$ 

This gives the value of the c.d.f. for Z since  $F_Z(z) = P(Z \le z) = P(2Y - X \le z)$ . So differentiating with respect to z we obtain  $f_Z(z) = \frac{1}{2}(2-z) = 1 - \frac{z}{2}$  for 0 < z < 2 and  $f_Z(z) = 0$  elsewhere.

## Part 2

**5.** Random variables X and Y have joint p.d.f.  $f_{X,Y}(x,y) = C(x^2 + xy)$  for 0 < x < 1, 0 < y < 1 and  $f_{X,Y}(x,y) = 0$  elsewhere.





for 0 < x < 1 and  $f_X(x) = 0$  elsewhere.

$$f_Y(y) = \int_0^1 C(x^2 + xy) dx = \left[ C\left(\frac{1}{3}x^3 + \frac{1}{2}x^2y\right) \right]_{x=0}^{x=1} = C\left(\frac{1}{3} + \frac{1}{2}y\right)$$

for 0 < y < 1 and  $f_Y(y) = 0$  elsewhere.

We find C by integrating either marginal p.d.f., e.g.

$$1 = \int_0^1 C\left(\frac{1}{3} + \frac{1}{2}y\right) dy = \left[C\left(\frac{1}{3}y + \frac{1}{4}y^2\right)\right]_{y=0}^{y=1} = \frac{7}{12}C$$

Hence  $C = \frac{12}{7}$ .

**6.** X and Y have joint p.d.f.  $f_{X,Y}(x,y) = Ce^{-(x+y)}$  for  $0 < x < y < \infty$  and  $f_{X,Y}(x,y) = 0$  elsewhere.



for  $0 < x < \infty$ , and  $f_X(x) = 0$  elsewhere.

$$f_Y(y) = \int_0^y Ce^{-x}e^{-y}dx = Ce^{-y} \left[ -e^{-x} \right]_{x=0}^{x=y} = Ce^{-y} \left( 1 - e^{-y} \right)$$

for  $0 < y < \infty$  and  $f_Y(y) = 0$  elsewhere.

We find C by integrating either p.d.f. Clearly it is easiest to integrate  $f_X(x)$ .

$$1 = \int_0^\infty Ce^{-2x} dx = C \left[ -\frac{1}{2}e^{-2x} \right]_{x=0}^{x=\infty} = C\frac{1}{2}$$

Hence C=2.