Probability II. Solutions to Problem Sheet 6.
Part 1

1. Find C by using the result that the p.d.f. integrates to one.

Hence C = %.

Fx(z) =0for x <0, Fx(x) =1 for x > 2 and for 0 < x < 2,

If the mean is i, to show that the median is equal to the mean we just need to show
that Fy(p) = 3.
both equal to one.

Here =1 and Fx(1) = @ = 1. Hence the mean and median are

2. Mx(t) = e* (1 — i)71. Hence, differentiating by parts,
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Therefore E[X] = My (0) = a + 5. Also
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Hence E[X?] = My (0) = o 4+ 2* + Z. therefore
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Part 2

3. (a) By definition of the trinomial distribution we consider n independent trials and
Z = X +Y is the number of trials where either “success” or “failure” occurs. Since the
probability of {“s” or “f”} in each trial is p + 6 we have that Z ~ Binomial(n,p + 0).
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Hence X|(Z = z) ~ Binomial (z

p
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4. (a) Use equivalent events. Note that Fy(y) = 0 for y < 0. For y > 0, splitting the
range in the integral we obtain,

Fy(y) = PY <y)=P(X[<y)=P(-y< X <y)

y 0 0 U
= / _9|’3dyc—/ —eexdx+/ —e %y
2 0 2

=y
— [1 933} |:_16—0:c:| -1 e—@y
2 T=—y 2 =0

Differentiating the c.d.f. gives fy(y) = ngy(y) = e~ for y > 0 and fy(y) = 0 elsewhere.
Hence Y ~ Exp(0).
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(b) For [t| < 0,

0 [ 0 0 oo
Mx(t) = E[e™] = 5/ et o012l 1 — 3 (/ 0+ g0 +/ 6—(9—t)$dx)
—00 —00 0




Expanding the m.g.f. in a power series gives
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r=0

Hence E[X] =0, E[X? =25, = %, E[X?| =0 and E[X*] =4} = 2

91 — ot
Hence o= E[X] = O, 0'2 = E[(X —/L)Q] = E[X2] = 9%, \/E = E[(‘)i?)_u)?) = Eg?)] =0
and 3y = E[()iz“)4 = E([jf] — % -
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(c) Since Z = ¢g(Y) = Y? is a monotone function, we can use the formula explained in
Notes 7:

F2(2) = Frlg™'(2) \dg—”

dz
(note the trivial change notations!) In our case g~!(z) = z3. Hence
-1
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and thus fz(z) =0if 2 < 0 and for z > 0
dg=t(z b 2
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