Probability II. Solutions to Problem Sheet 6.

Part 1

1. Find C by using the result that the p.d.f. integrates to one.

$$
1=\int_{0}^{2} C\left(2 x-x^{2}\right) d x=\left[C\left(x^{2}-\frac{x^{3}}{3}\right)\right]_{x=0}^{x=2}=C\left(4-\frac{8}{3}\right)=\frac{4}{3} C
$$

Hence $C=\frac{3}{4}$.
$F_{X}(x)=0$ for $x \leq 0, F_{X}(x)=1$ for $x \geq 2$ and for $0<x<2$,

$$
\begin{gathered}
F_{X}(x)=\int_{0}^{x} \frac{3}{4}\left(2 s-s^{2}\right) d s=\frac{3}{4}\left(x^{2}-\frac{x^{3}}{3}\right)=\frac{x^{2}(3-x)}{4} \\
E[X]=\int_{0}^{2} \frac{3}{4}\left(2 x^{2}-x^{3}\right) d x=\left[\frac{3}{4}\left(\frac{2}{3} x^{3}-\frac{x^{4}}{4}\right)\right]_{x=0}^{x=2}=4-3=1
\end{gathered}
$$

If the mean is μ, to show that the median is equal to the mean we just need to show that $F_{X}(\mu)=\frac{1}{2}$. Here $\mu=1$ and $F_{X}(1)=\frac{1^{2}(3-1)}{4}=\frac{1}{2}$. Hence the mean and median are both equal to one.
2. $M_{X}(t)=e^{\alpha t}\left(1-\frac{t}{\theta}\right)^{-1}$. Hence, differentiating by parts,

$$
M_{X}^{\prime}(t)=\alpha e^{\alpha t}\left(1-\frac{t}{\theta}\right)^{-1}+e^{\alpha t} \frac{1}{\theta}\left(1-\frac{t}{\theta}\right)^{-2}
$$

Therefore $E[X]=M_{X}^{\prime}(0)=\alpha+\frac{1}{\theta}$. Also

$$
M_{X}^{\prime \prime}(t)=\alpha^{2} e^{\alpha t}\left(1-\frac{t}{\theta}\right)^{-1}+2 \frac{\alpha}{\theta} e^{\alpha t}\left(1-\frac{t}{\theta}\right)^{-2}+e^{\alpha t} \frac{2}{\theta^{2}}\left(1-\frac{t}{\theta}\right)^{-3}
$$

Hence $E\left[X^{2}\right]=M_{X}^{\prime \prime}(0)=\alpha^{2}+\frac{2 \alpha}{\theta}+\frac{2}{\theta^{2}}$. therefore

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\alpha^{2}+\frac{2 \alpha}{\theta}+\frac{2}{\theta^{2}}-\left(\alpha+\frac{1}{\theta}\right)^{2}=\frac{1}{\theta^{2}}
$$

Part 2

3. (a) By definition of the trinomial distribution we consider n independent trials and $Z=X+Y$ is the number of trials where either "success" or "failure" occurs. Since the probability of $\{$ " s " or " f " $\}$ in each trial is $p+\theta$ we have that $Z \sim \operatorname{Binomial}(n, p+\theta)$.
(b)

$$
\begin{aligned}
P(X=x \mid Z=z) & =\frac{P(X=x, Z=z)}{P(Z=z)}=\frac{P(X=x, Y=z-x)}{P(Z=z)} \\
& =\frac{\frac{n!}{x!(z-x)!(n-z)!} p^{x} \theta^{z-x}(1-p-\theta)^{n-z}}{\binom{n}{z}(p+\theta)^{z}(1-p-\theta)^{(n-z)}} \\
& =\binom{z}{x} \frac{p^{x} \theta^{z-x}}{(p+\theta)^{z}}=\binom{z}{x}\left(\frac{p}{(p+\theta)}\right)^{x}\left(1-\frac{p}{(p+\theta)}\right)^{z-x}
\end{aligned}
$$

Hence $X \left\lvert\,(Z=z) \sim \operatorname{Binomial}\left(z, \frac{p}{(p+\theta)}\right)\right.$
4. (a) Use equivalent events. Note that $F_{Y}(y)=0$ for $y \leq 0$. For $y>0$, splitting the range in the integral we obtain,

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y)=P(|X| \leq y)=P(-y<X<y) \\
& =\int_{-y}^{y} \frac{\theta}{2} e^{-\theta|x|} d x=\int_{-y}^{0} \frac{\theta}{2} e^{\theta x} d x+\int_{0}^{y} \frac{\theta}{2} e^{-\theta x} d x \\
& =\left[\frac{1}{2} e^{\theta x}\right]_{x=-y}^{x=0}+\left[-\frac{1}{2} e^{-\theta x}\right]_{x=0}^{x=y}=1-e^{-\theta y}
\end{aligned}
$$

Differentiating the c.d.f. gives $f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\theta e^{-\theta y}$ for $y>0$ and $f_{Y}(y)=0$ elsewhere. Hence $Y \sim \operatorname{Exp}(\theta)$.
(b) For $|t|<\theta$,

$$
\begin{aligned}
M_{X}(t) & =E\left[e^{t X}\right]=\frac{\theta}{2} \int_{-\infty}^{\infty} e^{t x} e^{-\theta|x|} d x=\frac{\theta}{2}\left(\int_{-\infty}^{0} e^{(\theta+t) x} d x+\int_{0}^{\infty} e^{-(\theta-t) x} d x\right) \\
& =\left[\frac{\theta}{2(\theta+t)} e^{(\theta+t) x}\right]_{x=-\infty}^{x=0}+\left[-\frac{\theta}{2(\theta-t)} e^{-(\theta-t) x}\right]_{x=0}^{x=\infty} \\
& =\frac{\theta}{2(\theta+t)}+\frac{\theta}{2(\theta-t)}=\frac{\theta^{2}}{\theta^{2}-t^{2}}=\left(1-\frac{t^{2}}{\theta^{2}}\right)^{-1}
\end{aligned}
$$

Expanding the m.g.f. in a power series gives

$$
M_{X}(t)=\left(1-\frac{t^{2}}{\theta^{2}}\right)^{-1}=\sum_{r=0}^{\infty} \frac{t^{2 r}}{\theta^{2 r}}
$$

Hence $E[X]=0, E\left[X^{2}\right]=2!\frac{1}{\theta^{2}}=\frac{2}{\theta^{2}}, E\left[X^{3}\right]=0$ and $E\left[X^{4}\right]=4!\frac{1}{\theta^{4}}=\frac{24}{\theta^{4}}$
Hence $\mu=E[X]=0, \sigma^{2}=E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]=\frac{2}{\theta^{2}}, \sqrt{\beta_{1}}=\frac{E\left[(X-\mu)^{3}\right.}{\sigma^{3}}=\frac{E\left[X^{3}\right]}{\sigma^{3}}=0$ and $\beta_{2}=\frac{E\left[(X-\mu)^{4}\right.}{\sigma^{4}}=\frac{E\left[X^{4}\right]}{\sigma^{4}}=\frac{\frac{24}{\theta^{4}}}{\frac{4}{\theta^{4}}}=6$
(c) Since $Z=g(Y)=Y^{3}$ is a monotone function, we can use the formula explained in Notes 7:

$$
f_{Z}(z)=f_{Y}\left(g^{-1}(z)\right)\left|\frac{d g^{-1}(z)}{d z}\right|
$$

(note the trivial change notations!) In our case $g^{-1}(z)=z^{\frac{1}{3}}$. Hence

$$
\frac{d g^{-1}(z)}{d z}=\frac{1}{3} z^{-\frac{2}{3}}
$$

and thus $f_{Z}(z)=0$ if $z<0$ and for $z>0$

$$
f_{Z}(z)=f_{Y}\left(g^{-1}(z)\right)\left|\frac{d g^{-1}(z)}{d z}\right|=\theta e^{-\theta z^{\frac{1}{3}}} z^{-\frac{2}{3}}
$$

