Probability II. Solutions to Problem Sheet 5.

Part 1

1. (i)

$$
\begin{aligned}
P(X=x \mid Y=y) & =\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{\frac{n!}{x!y!(n-x-y)!} p^{x} \theta^{y}(1-p-\theta)^{n-x-y}}{{ }^{n} C_{y} \theta^{y}(1-\theta)^{(n-y)}} \\
& ={ }^{n-y} C_{x} \frac{p^{x}(1-p-\theta)^{(n-y)-x}}{(1-\theta)^{n-y}} \\
& ={ }^{n-y} C_{x}\left(\frac{p}{(1-\theta)}\right)^{x}\left(1-\frac{p}{(1-\theta)}\right)^{(n-y)-x}
\end{aligned}
$$

Hence $X \left\lvert\, Y=y \sim \operatorname{Binomial}\left(n-y, \frac{p}{(1-\theta)}\right)\right.$ and so $E[X \mid Y]=(n-Y) \frac{p}{(1-\theta)}$. Then

$$
\begin{aligned}
E[X Y] & =E[Y \times E[X \mid Y]]=\frac{p}{(1-\theta)} E[Y(n-Y)] \\
& =\frac{p}{(1-\theta)}\left(n E[Y]-\left(\operatorname{Var}(Y)+(E[Y])^{2}\right)\right)=\frac{p}{(1-\theta)}\left(n^{2} \theta-n \theta(1-\theta)-n^{2} \theta^{2}\right) \\
& =\frac{p}{(1-\theta)}\left(n^{2}-n\right) \theta(1-\theta)=n(n-1) p \theta
\end{aligned}
$$

Hence $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=n(n-1) p \theta-n^{2} p \theta=-n p \theta$
(ii) $Z=X+Y$. Hence $G_{Z}(t)=E\left[t^{Z}\right]=E\left[t^{X+Y}\right]=E\left[t^{X} t^{Y}\right]=G_{X, Y}(t, t)$. But from lectures $G_{X, Y}(s, t)=(p s+\theta t+(1-p-\theta))^{n}$. Therefore $G_{Z}(t, t)=(p t+\theta t+(1-p-\theta))^{n}=$ $((p+\theta) t+(1-(p+\theta)))^{n}$ which is the p.g.f. of binomial so that $Z \sim \operatorname{Binomial}(n, p+\theta)$.

$$
\begin{aligned}
P(X=x \mid Z=z) & =\frac{P(X=x, Z=z)}{P(Z=z)}=\frac{P(X=x, Y=z-x)}{P(Z=z)} \\
& =\frac{\frac{n!}{x!(z-x)!(n-z)!}!^{x} \theta^{z-x}(1-p-\theta)^{n-z}}{{ }^{n} C z(p+\theta) z}(1-p-\theta) \\
& ={ }^{z} C x \frac{p^{x} \theta^{z-x}}{(p+\theta) z}={ }^{z} C x\left(\frac{p}{(p+\theta)}\right)^{x}\left(1-\frac{p}{(p+\theta)}\right)^{z-x}
\end{aligned}
$$

Hence $X \left\lvert\, Z=z \sim \operatorname{Binomial}\left(z, \frac{p}{(p+\theta)}\right)\right.$

Part 2

2.A. (i) $E\left(S_{N}\right)=a E(N), \operatorname{Var}\left(S_{N}\right)=\sigma^{2} E(N)+a^{2} \operatorname{Var}(N)$
(ii) The shop receives $S=\sum_{j=1}^{N} X_{j}$ pounds. Since $N \sim \operatorname{Poisson}(100)$ we have: $E(N)=$ $100, \operatorname{Var}(N)=100$. Also, in our case $a=20, \sigma^{2}=40$. Hence

$$
E(S)=20 \times 100=2000, \quad \operatorname{Var}(S)=40 \times 100+20^{2} \times 100=44000
$$

2.B. (i) Define $Z_{j}=1$ if the $j^{\text {th }}$ message is not detected by the spam filter and $Z_{j}=0$ if it is detected. Then $Z_{j} \sim \operatorname{Bernoulli}(p)$ and $X=\sum_{j=1}^{Y} Z_{j}$. Hence, applying the above formulae gives

$$
E[X]=E(Z) E(Y)=p \mu, \quad \operatorname{Var}(X)=\operatorname{Var}(Z) E(Y)+p^{2} \operatorname{Var}(Y)=p q \mu+p^{2} \mu=p \mu
$$

(We use here that $E(Y)=\mu, \operatorname{Var}(Y)=\mu$ and by definition the r.v. $Z \sim \operatorname{Bernoulli}(p)$ has the same distribution as any of Z_{j}; by definition $q=1-p$. Remember also that $E(Z)=p, \operatorname{Var}(Z)=p q$.)
(ii) If $Y=y$ then $X=\sum_{j=1}^{y} Z_{j}$. Hence

$$
E\left[t^{X} \mid Y=y\right]=E\left[\prod_{j=1}^{y} t^{Z_{j}}\right]=\prod_{j=1}^{y} E\left[t^{Z_{j}}\right]=\left(E\left[t^{Z}\right]\right)^{y}=(p t+q)^{y} .
$$

But then $\left.E\left[t^{X} \mid Y\right]\right]=(p t+q)^{Y}$ and

$$
G_{X}(t)=E\left[E\left[t^{X} \mid Y\right]\right]=E\left[(p t+q)^{Y}\right]=G_{Y}(p t+q)=e^{\mu((p t+q)-1)}=e^{p \mu(t-1)}
$$

(Note that the fact that $G_{Y}(s)=e^{\mu(s-1)}$ is due to Y being a Poisson r.v. and is used without proof which was given a long time ago.)
(iii) But this is the p.g.f. of a Poisson r.v. with parameter $\lambda=p \mu$. Hence by the uniqueness of the p.g.f., $X \sim \operatorname{Poisson}(p \mu)$, or, equivalently, $P(X=k)=e^{-p \mu} \frac{(p \mu)^{k}}{k!}$.
(iv) In this case $G_{Y}(t)=\sum_{k=0}^{\infty} \bar{p} \bar{q}^{k} t^{k}=\frac{\bar{p}}{1-\bar{q} t}, E(Y)=\frac{\bar{q}}{\bar{p}}, \operatorname{Var}(Y)=\frac{\bar{q}}{\bar{p}^{2}}$. Hence

$$
E[X]=E(Z) E(Y)=p \frac{\bar{q}}{\bar{p}}, \quad \operatorname{Var}(X)=\operatorname{Var}(Z) E(Y)+p^{2} \operatorname{Var}(Y)=p q \frac{\bar{q}}{\bar{p}}+p^{2} \frac{\bar{q}}{\bar{p}^{2}}
$$

To find the p.g.f. of X we note first that $E\left[t^{X} \mid Y=y\right]$ depends only on y and the distribution of Z. The calculation is therefore exactly the same as in (ii):

$$
E\left[t^{X} \mid Y=y\right]=E\left[\prod_{j=1}^{y} t^{Z_{j}}\right]=\prod_{j=1}^{y} E\left[t^{Z_{j}}\right]=\left(E\left[t^{Z}\right]\right)^{y}=(p t+q)^{y}
$$

Hence $\left.E\left[t^{X} \mid Y\right]\right]=(p t+q)^{Y}$ (but the distribution of this r.v. is different from the one in (ii)!). We now have

$$
G_{X}(t)=E\left[E\left[t^{X} \mid Y\right]\right]=E\left[(p t+q)^{Y}\right]=G_{Y}(p t+q)=\frac{\bar{p}}{1-\bar{q}(p t+q)} .
$$

Exercise. Prove that $X \sim \operatorname{Geometric}\left(\frac{p}{1-\bar{q} q}\right)$. (You were not required to identify the distribution of X but given the $G_{X}(t)$ this is a very easy thing to do.)

