Probability II. Solutions to Problem Sheet 4.

1. Let X give the number of offspring for a bacterium. Then the corresponding $G(t)=$ $\frac{1}{4}+\frac{1}{2} t^{2}+\frac{1}{4} t^{3}$.
(a) As you will know (see lecture) $\theta_{1}=G(0)=\frac{1}{4}$. From the relation $\theta_{n}=G\left(\theta_{n-1}\right.$ we have

$$
\theta_{2}=\frac{1}{4}+\frac{1}{2}\left(\frac{1}{4}\right)^{2}+\frac{1}{4}\left(\frac{1}{4}\right)^{3}=\frac{73}{256}=0.2852
$$

and

$$
\theta_{3}=G\left(\theta_{2}\right)=\frac{1}{4}+\frac{1}{2}\left(\frac{73}{256}\right)^{2}+\frac{1}{4}\left(\frac{73}{256}\right)^{3}=0.29645
$$

(b) Use results from lectures with $\mu=E[X]=\frac{7}{4}$ and $\sigma^{2}=E\left[X^{2}\right]-(E[X])^{2}=\frac{17}{4}-\frac{49}{16}=$ $\frac{19}{16}$

$$
\begin{aligned}
E\left[Y_{3}\right] & =\mu^{3}=\left(\frac{7}{4}\right)^{3}=\frac{343}{64}=5.359375 \\
\operatorname{Var}\left(Y_{3}\right) & =\frac{\sigma^{2} \mu^{2}\left(1-\mu^{3}\right)}{(1-\mu)} \\
& =\frac{\frac{19}{16} \times \frac{49}{16} \times 4.359375}{\frac{3}{4}} \\
& =\frac{19 \times 49 \times 4.359375}{192}=21.13843
\end{aligned}
$$

(c) From lectures, θ is the smallest positive root of $G(t)=t$. So we solve $\frac{1}{4}+\frac{1}{2} t^{2}+\frac{1}{4} t^{3}=t$ i.e. $t^{3}+2 t^{2}-4 t+1=0$, i.e. $(t-1)\left(t^{2}+3 t-1\right)=0$. The roots are $t_{1}=1$ and $t_{2}=\frac{-3+\sqrt{13}}{2}$, $t_{2}=\frac{-3-\sqrt{13}}{2}$. Hence $\theta=\frac{-3+\sqrt{13}}{2}$.
(d) If $Y_{0}=3$ then we find the mean and variance for the number of bacteria in generation 3 by multiplying the previous results by 3 . So now $E\left[Y_{3}\right]=3 \times \frac{343}{64}=16.078125$ and $\operatorname{Var}\left(Y_{3}\right)=3 \times 21.13843=63.41529$

Also we find the probability of eventual extinction by taking the value in part (d) to the power 3 , i.e. the probability of eventual extinction is $\left(\frac{-3+\sqrt{13}}{2}\right)^{3}$.
2. Let Y count the number of children for a male.

Either: use generating functions. Now $G_{Y}(t)=\frac{1}{4}+\frac{3}{4} t^{2}$. Also $X \left\lvert\, Y=y \sim \operatorname{Binomial}\left(y, \frac{3}{4}\right)\right.$ so that $E\left[t^{X} \mid Y=y\right]=\left(\frac{1}{4}+\frac{3}{4} t\right)^{y}$. Hence

$$
\begin{aligned}
G_{X}(t) & =E\left[E\left[t^{X} \mid Y\right]\right]=E\left[\left(\frac{1}{4}+\frac{3}{4} t\right)^{Y}\right]=G_{Y}\left(\frac{1}{4}+\frac{3}{4} t\right) \\
& =\frac{1}{4}+\frac{3}{4}\left(\frac{1}{4}+\frac{3}{4} t\right)^{2}=\frac{19}{64}+\frac{18}{64} t+\frac{27}{64} t^{2}
\end{aligned}
$$

Or: Use theorem of total probability $P(X=x)=P(X=x \mid Y=0) P(Y=0)+P(X=$ $x \mid Y=2) P(Y=2)$. Since $P(X=0 \mid Y=0)=1$ and $P(X=x \mid Y=0)=0$ if $x=1,2$, $P(X=0)=\frac{1}{4}+\left(\frac{1}{4}\right)^{2} \frac{3}{4}=\frac{19}{64}, P(X=1)=\left(2\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)\right) \frac{3}{4}=\frac{18}{64}$ and $P(X=2)=\left(\frac{3}{4}\right)^{2} \frac{3}{4}=\frac{27}{64}$ Hence $G_{X}(t)=\frac{19}{64}+\frac{18}{64} t+\frac{27}{64} t^{2}$

We first find $\theta=\mathrm{P}$ (eventual extinction) when there is just one ancestor called Ramsbottom. Then θ is the smallest positive root of $t=G_{X}(t)$, i.e. of $t=\frac{19}{64}+\frac{18}{64} t+\frac{27}{64} t^{2}$, i.e. $27 t^{2}-46 t+19=0$, i.e. $(t-1)(27 t-19)=0$. Hence $\theta=\frac{19}{27}$
(i) If there are k boys called Ramsbottom initially, then the probability of eventual extinction is just $\theta^{k}=\left(\frac{19}{27}\right)^{k}$.
(ii) Using the theorem of total probability, if we let E be the event 'the name Ramsbottom eventually dies out',

$$
\begin{aligned}
P(E) & =\sum_{k=0}^{N} P(E \mid K=k) P(K=k)=\sum_{k=0}^{N} \theta^{k} P(K=k)=G_{K}(\theta) \\
& =\left(\frac{1}{2}+\frac{1}{2} \theta\right)^{N}=\left(\frac{1}{2}+\frac{1}{2} \frac{19}{27}\right)^{N}=\left(\frac{23}{27}\right)^{N}
\end{aligned}
$$

