Probability II. Solutions to Problem Sheet 3.

1. Let X give the number of offspring for a bacterium. Then Gx(t) = % + th.
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Therefore P(Y, = 0) = 2 P(Y, =2) = 2% and P(Y, =4) = 2L.

(b) Either
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(d) From lectures, 6 is the smallest positive root of Gx(t) = t. So we solve 2 + 2¢* = ¢
ie. 3t2—5t+2=0,ie (t—1)(3t—2)=0. The roots are t = 1 and ¢t = 2. Hence 0 = 2.

w

(e) If Yo = 5 then we find the mean and variance for the number of bacteria in generation

3 by multiplying the previous results by 5. So now E[Y3] = 5 x 28 = 218 = 864 and

125
Var(Ys) =5 x 18628 — 78621 _ 95 15068

Also we find the probability of eventual extinction by taking the value in part (d) to

the power 5, i.e. the probability of eventual extinction is (%)5 = % = 0.131687

2.

We prove that 0, = P(Y,, = 0) = .25 by induction on n.

The result holds for n = 0 since Yy = 1 and hence 6, = P(Yy = 0) = 0 which is just
0
01

Now assume that Y,, = nL—i-l for all non-negative integers n < N. We now show that it
holds for n = N + 1.

From lectures Oyy1 = Gx(0x). Also from the inductive hypothesis with n = N,

Oy = NLH Therefore
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Hence the inductive hypothesis also holds for n = N +1. Hence by induction 0, = 5

for all non-negative integers n.

The probability of eventual extinction of the branching process is 0 = lim,, .. 0, =
limy, e 47 = 1. So the branching process is certain to eventually become extinct. the
lecture 3. This problem can be solved in the same way as 4.A. below. It is also similar
to what we discussed in Lecture 9.

4.A. Substituting the expression for z; into the left hand side of the main equation yields

azpi1 + bz +azp_1 = aley + ca(k + 1) + e3(k + 1))+
b(cr + cok + c3k?) + aler + co(k — 1) + c3(k — 1)?) =
c1(2a +b) 4 c2(2a + b)k + c3((2a + b)k* + 2a) = 2acs

2



We thus have 2ac3 = f and hence c3 = %

The equations z); = 0 and zy = 0 now imply
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Hence co(N — M) + c3(N? — M?) = —d and
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4.B. Let By, By and B3 be the events that Joe wins, draws or loses the first game.

If Ay is the event that Joe loses his money starting from & units and L, = P(Ag), from
the theorem of total probability

1 1 1
Ly = P(Ay) = P(ABy) P(B1)+P(Ax| Br) P(B2)+P( Al By)P(By) = Liag+Lig+Lior

Hence Ly 1 — 2Ly + Lyy = 0for k =1,.... N —1. Also Ly = 1 and Ly = 0. These
equations can be viewed as a particular case of those considered in 4.A with f =0, d =1,
a= }l. The solution is therefore

k. N-—k

Lk:C1+Czk:1—N:T.

So the probability he loses all his money is %

Note that you could have obtained this result from the ordinary gambler’s ruin result
by only considering games where he does not draw. The probability p will then be the
probability of winning given that the game is not drawn (so is 1/2 here).

Let Ty be the number of games he plays starting from k units and let Ey = E[Ty].

Ey = E[T\) = E[T}|By|P(By) + E[Ty| Bo]P(By) + E[Ti| Bo) P(By)

1 1 1
= Z<1 + Ep1) + 5(1 + Ex) + 1(1 + Ej_1)



Re-arranging gives Fy,q — 2E, + Er_1 = —4. Also Ey = Ey = 0. Once again, this is
a particular case of 4.A with d =0, f = —4,a=1, M = 0. Hence

E) = c1 + cok + c3k® = 2Mk — 2k* = 2k(M — k).

Therefore the expected duration of the game starting from k units is Ey = 2k(N — k)



