Probability II. Solutions to Problem Sheet 3.

1. Let X give the number of offspring for a bacterium. Then $G_{X}(t)=\frac{2}{5}+\frac{3}{5} t^{2}$.
(a)

$$
\begin{aligned}
G_{Y_{2}}(t) & =G_{Y_{1}}\left(G_{X}(t)\right)=G_{X}\left(G_{X}(t)\right)=\frac{2}{5}+\frac{3}{5}\left(\frac{2}{5}+\frac{3}{5} t^{2}\right)^{2} \\
& =\frac{2}{5}+\frac{3}{5}\left(\frac{4}{25}+\frac{12}{25} t^{2}+\frac{9}{25} t^{4}\right)=\frac{62}{125}+\frac{36}{125} t^{2}+\frac{27}{125} t^{4}
\end{aligned}
$$

Therefore $P\left(Y_{2}=0\right)=\frac{62}{125}, P\left(Y_{2}=2\right)=\frac{36}{125}$ and $P\left(Y_{2}=4\right)=\frac{27}{125}$.
(b) Either

$$
\theta_{3}=G_{X}\left(G_{Y_{2}}(0)\right)=G_{X}\left(\frac{62}{125}\right)=\frac{2}{5}+\frac{3}{5}\left(\frac{62}{125}\right)^{2}=\frac{42782}{78125}=0.5476096
$$

or

$$
\theta_{3}=G_{Y_{2}}\left(G_{X}(0)\right)=G_{Y_{2}}\left(\frac{2}{5}\right)=\frac{2}{5}+\frac{3}{5}\left(\frac{2}{5}+\frac{3}{5} \times \frac{4}{25}\right)^{2}=\frac{2}{5}+\frac{3}{5}\left(\frac{62}{125}\right)^{2}=0.5476096
$$

(c) Use results from lectures with $\mu=E[X]=\frac{6}{5}$ and $\sigma^{2}=E\left[X^{2}\right]-(E[X])^{2}=\frac{12}{5}-\frac{36}{25}=$ $\frac{24}{25}$

$$
E\left[Y_{3}\right]=\mu^{3}=\left(\frac{6}{5}\right)^{3}=\frac{216}{125}=1.728
$$

$$
\begin{aligned}
\operatorname{Var}\left(Y_{3}\right) & =\frac{\sigma^{2} \mu^{2}\left(1-\mu^{3}\right)}{(1-\mu)} \\
& =\frac{\frac{24}{25} \times \frac{36}{25}\left(\frac{91}{125}\right)}{\frac{1}{5}} \\
& =\frac{78624}{15625}=5.031936
\end{aligned}
$$

(d) From lectures, θ is the smallest positive root of $G_{X}(t)=t$. So we solve $\frac{2}{5}+\frac{3}{5} t^{2}=t$ i.e. $3 t^{2}-5 t+2=0$, i.e. $(t-1)(3 t-2)=0$. The roots are $t=1$ and $t=\frac{2}{3}$. Hence $\theta=\frac{2}{3}$.
(e) If $Y_{0}=5$ then we find the mean and variance for the number of bacteria in generation 3 by multiplying the previous results by 5 . So now $E\left[Y_{3}\right]=5 \times \frac{216}{125}=\frac{216}{25}=8.64$ and $\operatorname{Var}\left(Y_{3}\right)=5 \times \frac{78624}{15625}=\frac{78624}{3125}=25.15968$

Also we find the probability of eventual extinction by taking the value in part (d) to the power 5 , i.e. the probability of eventual extinction is $\left(\frac{2}{3}\right)^{5}=\frac{32}{243}=0.131687$
2.

$$
G_{X}(t)=\sum_{x=0}^{\infty}\left(\frac{1}{2}\right)^{x+1} t^{x}=\sum_{x=0}^{\infty} \frac{1}{2}\left(\frac{t}{2}\right)^{x}=\frac{\frac{1}{2}}{\left(1-\frac{t}{2}\right)}=\frac{1}{2-t}
$$

We prove that $\theta_{n}=P\left(Y_{n}=0\right)=\frac{n}{n+1}$ by induction on n.
The result holds for $n=0$ since $Y_{0} \equiv 1$ and hence $\theta_{0}=P\left(Y_{0}=0\right)=0$ which is just $\frac{0}{0+1}$.

Now assume that $Y_{n}=\frac{n}{n+1}$ for all non-negative integers $n \leq N$. We now show that it holds for $n=N+1$.

From lectures $\theta_{N+1}=G_{X}\left(\theta_{N}\right)$. Also from the inductive hypothesis with $n=N$, $\theta_{N}=\frac{N}{N+1}$. Therefore

$$
\theta_{N+1}=G_{X}\left(\theta_{N}\right)=\frac{1}{2-\theta_{N}}=\frac{1}{2-\frac{N}{N+1}}=\frac{N+1}{2(N+1)-N}=\frac{N+1}{(N+1)+1}
$$

Hence the inductive hypothesis also holds for $n=N+1$. Hence by induction $\theta_{n}=\frac{n}{n+1}$ for all non-negative integers n.

The probability of eventual extinction of the branching process is $\theta=\lim _{n \rightarrow \infty} \theta_{n}=$ $\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$. So the branching process is certain to eventually become extinct. the lecture 3. This problem can be solved in the same way as 4.A. below. It is also similar to what we discussed in Lecture 9.
4.A. Substituting the expression for z_{k} into the left hand side of the main equation yields

$$
\begin{aligned}
& a z_{k+1}+b z_{k}+a z_{k-1}=a\left(c_{1}+c_{2}(k+1)+c_{3}(k+1)^{2}\right)+ \\
& b\left(c_{1}+c_{2} k+c_{3} k^{2}\right)+a\left(c_{1}+c_{2}(k-1)+c_{3}(k-1)^{2}\right)= \\
& c_{1}(2 a+b)+c_{2}(2 a+b) k+c_{3}\left((2 a+b) k^{2}+2 a\right) \equiv 2 a c_{3}
\end{aligned}
$$

We thus have $2 a c_{3}=f$ and hence $c_{3}=\frac{f}{2 a}$.
The equations $z_{M}=0$ and $z_{N}=0$ now imply

$$
\left\{\begin{array}{l}
c_{1}+c_{2} M+c_{3} M^{2}=d \\
c_{1}+c_{2} N+c_{3} N^{2}=0
\end{array}\right.
$$

Hence $c_{2}(N-M)+c_{3}\left(N^{2}-M^{2}\right)=-d$ and

$$
c_{2}=\frac{-d}{N-M}-c_{3}(N+M)=\frac{-d}{N-M}-\frac{f}{2 a}(N+M) .
$$

Finally

$$
c_{1}=-c_{2} N-c_{3} N^{2}=\frac{d N}{N-M}+\frac{f}{2 a} M N
$$

and

$$
z_{k}=\frac{d N}{N-M}+\frac{f}{2 a} M N+\left(\frac{-d}{N-M}-\frac{f}{2 a}(N+M)\right) k+\frac{f}{2 a} k^{2} .
$$

4.B. Let B_{1}, B_{2} and B_{3} be the events that Joe wins, draws or loses the first game.

If A_{k} is the event that Joe loses his money starting from k units and $L_{k}=P\left(A_{k}\right)$, from the theorem of total probability
$L_{k}=P\left(A_{k}\right)=P\left(A_{k} \mid B_{1}\right) P\left(B_{1}\right)+P\left(A_{k} \mid B_{2}\right) P\left(B_{2}\right)+P\left(A_{k} \mid B_{3}\right) P\left(B_{3}\right)=L_{k+1} \frac{1}{4}+L_{k} \frac{1}{2}+L_{k-1} \frac{1}{4}$

Hence $L_{k+1}-2 L_{k}+L_{k-1}=0$ for $k=1, \ldots, N-1$. Also $L_{0}=1$ and $L_{N}=0$. These equations can be viewed as a particular case of those considered in 4.A with $f=0, d=1$, $a=\frac{1}{4}$. The solution is therefore

$$
L_{k}=c_{1}+c_{2} k=1-\frac{k}{N}=\frac{N-k}{N} .
$$

So the probability he loses all his money is $\frac{N-k}{N}$.
Note that you could have obtained this result from the ordinary gambler's ruin result by only considering games where he does not draw. The probability p will then be the probability of winning given that the game is not drawn (so is $1 / 2$ here).

Let T_{k} be the number of games he plays starting from k units and let $E_{k}=E\left[T_{k}\right]$.

$$
\begin{aligned}
E_{k} & =E\left[T_{k}\right]=E\left[T_{k} \mid B_{1}\right] P\left(B_{1}\right)+E\left[T_{k} \mid B_{2}\right] P\left(B_{2}\right)+E\left[T_{k} \mid B_{3}\right] P\left(B_{3}\right) \\
& =\frac{1}{4}\left(1+E_{k+1}\right)+\frac{1}{2}\left(1+E_{k}\right)+\frac{1}{4}\left(1+E_{k-1}\right)
\end{aligned}
$$

Re-arranging gives $E_{k+1}-2 E_{k}+E_{k-1}=-4$. Also $E_{0}=E_{N}=0$. Once again, this is a particular case of 4.A with $d=0, f=-4, a=1, M=0$. Hence

$$
E_{k}=c_{1}+c_{2} k+c_{3} k^{2}=2 M k-2 k^{2}=2 k(M-k)
$$

Therefore the expected duration of the game starting from k units is $E_{k}=2 k(N-k)$

