Probability II. Solutions to Problem Sheet 2.

1. This is just the gambler's ruin problem with $p=\frac{18}{37}$. We want $r_{500}(0,1000)$. From notes

$$
r_{k}(M, N)=\frac{\left(\frac{q}{p}\right)^{k}-\left(\frac{q}{p}\right)^{M}}{\left(\frac{q}{p}\right)^{N}-\left(\frac{q}{p}\right)^{M}}
$$

Therefore

$$
r_{500}(0,1000)=\frac{\left(\frac{19}{18}\right)^{500}-1}{\left(\frac{19}{18}\right)^{1000}-1}=\frac{1}{\left(\frac{19}{18}\right)^{500}+1}=1.8174 \times 10^{-12}
$$

If Kermit's stake at each game is $£ 10$ we change units and write each of k, M and N in terms of new units. So we want to find

$$
r_{50}(0,100)=\frac{\left(\frac{19}{18}\right)^{50}-1}{\left(\frac{19}{18}\right)^{100}-1}=\frac{1}{\left(\frac{19}{18}\right)^{50}+1}=0.062775
$$

2. Let X be the amount he wins. Let B_{1}, be the event 'the first throw is $6^{\prime}, B_{2}$ be the event 'the first throw is a 1 and B_{3} be the event 'the first throw is $2,3,4$ or 5 .

$$
\begin{aligned}
E[X] & =E\left[X \mid B_{1}\right] P\left(B_{1}\right)+E\left[X \mid B_{2}\right] P\left(B_{2}\right)+E\left[X \mid B_{3}\right] P\left(B_{3}\right) \\
& =(C-1+E[X]) \frac{1}{6}+(-1) \frac{1}{6}+(-1+E[X]) \frac{2}{3} \\
& =\frac{C-6}{6}+\frac{5}{6} E[X]
\end{aligned}
$$

Hence $E[X]=C-6$. the game is fair if $E[X]=0$, i.e. $C=6$.
3.A. Let B_{1} be the event that the first throw gives 2 sixes, B_{2} be the event that the first throw gives a product of 6 and B_{3} be the event that the first throw has a product which is not 6 or 36. Then

$$
P\left(B_{1}\right)=\frac{1}{36}, P\left(B_{2}\right)=\frac{4}{36}=\frac{1}{9} \text { and } P\left(B_{3}\right)=\frac{31}{36} .
$$

$P(E)=P\left(B_{1}\right) P\left(E \mid B_{1}\right)+P\left(B_{2}\right) P\left(E \mid B_{2}\right)+P\left(B_{3}\right) P\left(E \mid B_{3}\right)=\frac{1}{36} \times 0+\frac{1}{9} \times 1+\frac{31}{36} \times P(E)$

Therefore $\frac{5}{36} P(E)=\frac{1}{9}$ and so $P(E)=\frac{4}{5}$.
Remark. You can also see this by symmetry. There are 5 values on the pair of dice for which the game ends, namely $\{(6,6),(1,6),(6,1),(2,3),(3,2)\}$. The game is equally likely to end on each of these. Four correspond to a product of 6 . Therefore $P(E)=\frac{4}{5}$.
3.B. This is equivalent to the gambler's ruin problem with $p=1 / 2, k=3, M=0, N=9$ where we want $r_{3}(0,9)$.

When $p=1 / 2, r_{k}(M, N)=\frac{k-M}{N-M}$, and hence $r_{3}(0,9)=\frac{3-0}{9-0}=\frac{1}{3}$.
3.C. Here $p=1 / 2$ so that $E_{k}(M, N)=(k-M)(N-k)$. We want $E_{50}(0,100)=$ $(50-0)(100-50)=2500$

If his stake at each game is $£ 5$ we simply alter the units so $£ 5$ is one new unit. Then in new units $k=10, M=0$ and $N=20$. Hence we want $E_{10}(0,20)=(10-0)(20-10)=100$.

