Probability II. Solutions to Sheet 10.

Part 1

1. Let \mathbf{X} have vector of means μ and variance-covariance matrix \mathbf{V} and let $\mathbf{Y}=\mathbf{A X}$. then

$$
\mu=\binom{2}{5}, \quad \mathbf{V}=\left(\begin{array}{ll}
4 & -1 \\
-1 & 2
\end{array}\right), \quad \mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
1 & -3
\end{array}\right) .
$$

Therefore

$$
E[\mathbf{Y}]=\mathbf{A} \mu=\left(\begin{array}{ll}
1 & 1 \\
1 & -3
\end{array}\right)\binom{2}{5}=\binom{7}{-13}
$$

and the variance-covariance matrix for \mathbf{Y} is

$$
\mathbf{A V A}^{T}=\left(\begin{array}{ll}
1 & 1 \\
1 & -3
\end{array}\right)\left(\begin{array}{ll}
4 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & -3
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & -3
\end{array}\right)\left(\begin{array}{ll}
3 & 7 \\
1 & -7
\end{array}\right)=\left(\begin{array}{ll}
4 & 0 \\
0 & 28
\end{array}\right)
$$

Y_{1} and Y_{2} are linear functions of bivariate normals so are bivariate normal. Since $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=$ 0 , in fact Y_{1} and Y_{2} are independent normal. Therefore $Y_{1} \sim N(7,4)$ independent of $Y_{2} \sim N(-13,28)$
2. Since $Y \mid X=x$ has normal distribution with mean $\alpha+\beta x$ and variance σ^{2}, then $E\left[e^{t Y} \mid X=x\right]=e^{(\alpha+\beta x) t+\frac{1}{2} \sigma^{2} t^{2}}$. Also $X \sim N\left(\eta, \tau^{2}\right)$. Therefore $M_{X}(t)=e^{\eta t+\frac{1}{2} \tau^{2} t^{2}}$. Hence

$$
\begin{aligned}
M_{Y}(t) & =E\left[e^{t Y}\right]=E\left[E\left[e^{t Y} \mid X\right]\right]=E\left[e^{(\alpha+\beta X) t+\frac{1}{2} \sigma^{2} t^{2}}\right] \\
& =e^{\alpha t+\frac{1}{2} \sigma^{2} t^{2}} M_{X}(\beta t) \\
& =e^{\alpha t+\frac{1}{2} \sigma^{2} t^{2}} e^{\eta(\beta t)+\frac{1}{2}(\beta t)^{2} \tau^{2}} \\
& =e^{(\alpha+\beta \eta) t+\frac{1}{2}\left(\sigma^{2}+\beta^{2} \tau^{2}\right) t^{2}}
\end{aligned}
$$

This is the m.g.f. of a normal distribution, hence $Y \sim N\left(\alpha+\beta \eta, \sigma^{2}+\beta^{2} \tau^{2}\right)$.
The joint m.g.f. for X and Y is

$$
\begin{aligned}
M_{X, Y}(s, t) & =E\left[E\left[e^{s X+t Y} \mid X\right]\right]=E\left[e^{s X} E\left[e^{t Y} \mid X\right]\right] \\
& =E\left[e^{s X} e^{(\alpha+\beta X) t+\frac{1}{2} \sigma^{2} t^{2}}\right] \\
& =e^{\alpha t+\frac{1}{2} \sigma^{2} t^{2}} M_{X}(s+\beta t) \\
& =e^{\alpha t+\frac{1}{2} \sigma^{2} t^{2}} e^{\eta(s+\beta t)+\frac{1}{2} \tau^{2}(s+\beta t)^{2}} \\
& =e^{(\eta s+(\alpha+\beta \eta) t)+\frac{1}{2}\left(\tau^{2} s^{2}+\left(\sigma^{2}+\beta^{2} \tau^{2}\right) t^{2}+2 s t \beta \tau^{2}\right)}
\end{aligned}
$$

This is the joint m.g.f. of a bivariate normal distribution. So X and Y have bivariate normal distribution with means η and $\alpha+\beta \eta$, variances τ^{2} and $\sigma^{2}+\beta^{2} \tau^{2}$ and covariance $\beta \tau^{2}$ (or equivalently coefficient of correlation $\frac{\beta \tau^{2}}{\sqrt{\tau^{2}\left(\sigma^{2}+\beta^{2} \tau^{2}\right)}}$).

Part 2

3. (a) Markov's inequality for a non-negative r.v. X with mean μ states that for any $h>0, P(X \geq h) \leq \frac{\mu}{h}$. So here we simply take $h=\mu+2 \sigma$ to obtain

$$
P(X \geq \mu+2 \sigma) \leq \frac{\mu}{\mu+2 \sigma}
$$

So the upper bound for $P(X \geq \mu+2 \sigma)$ is $\frac{\mu}{\mu+2 \sigma}$.
(b) If X has mean μ and variance σ^{2} then Chebyshev's inequality states that, for any $h>0$,

$$
P(|X-\mu| \geq h) \leq \frac{\sigma^{2}}{h^{2}}
$$

So we just need to take $h=2 \sigma$. Then Chebyshev's inequality states that

$$
P(\mid X-\mu) \mid \geq 2 \sigma) \leq \frac{\sigma^{2}}{(2 \sigma)^{2}}=\frac{1}{4}
$$

So the upper bound for $P(|X-\mu| \geq 2 \sigma)$ is $\frac{1}{4}$.
If $X \sim \operatorname{Exp}(\theta)$, then $\mu=\frac{1}{\theta}$ and $\sigma^{2}=\frac{1}{\theta^{2}}$. Then:
(a) Markov's inequality is just $P\left(X \geq \frac{3}{\theta}\right) \leq \frac{1}{3}$. The exact probability is just

$$
P\left(X \geq \frac{3}{\theta}\right)=\int_{\frac{3}{\theta}}^{\infty} \theta e^{-\theta x} d x=e^{-3}=0.04979
$$

(b) Chebyshev's inequality is just $P\left(\left|X-\frac{1}{\theta}\right| \geq \frac{2}{\theta}\right) \leq \frac{1}{4}$ The exact probability is just

$$
P\left(\left|X-\frac{1}{\theta}\right| \geq \frac{2}{\theta}\right)=P\left(X \geq \frac{3}{\theta}\right)+P\left(X \leq-\frac{1}{\theta}\right)=\int_{\frac{3}{\theta}}^{\infty} \theta e^{-\theta x} d x=e^{-3}=0.04979
$$

4. $E\left[\bar{X}_{n}\right]=p$ and $\operatorname{Var}\left(\bar{X}_{n}\right)=\frac{p(1-p)}{n}$. Applying Chebyshev's inequality to \bar{X}_{n}, and letting $h=0.1 p$ gives

$$
P\left(\left|\bar{X}_{n}-p\right| \geq 0.1 p\right) \leq \frac{p(1-p) / n}{(0.1 p)^{2}}=\frac{100(1-p)}{n p}
$$

Hence $P\left(\left|\bar{X}_{n}-p\right| \geq 0.1 p\right) \leq 0.05$ provided $\frac{100(1-p)}{n p} \leq 0.05$, i.e. $n \geq \frac{100(1-p)}{0.05 p}=\frac{2000(1-p)}{p}$.
The Central Limit Theorem implies that if $Z=\frac{\sqrt{n}\left(\bar{X}_{n}-p\right)}{\sqrt{p(1-p)}}$, then for n large $P(Z \leq z) \bumpeq$ $\Phi(z)$ where Φ is the c.d.f. for the $N(0,1)$ distribution. Here we want

$$
0.05=P\left(\left|\bar{X}_{n}-p\right| \geq 0.1 p\right)=P\left(|Z| \geq \frac{\sqrt{n} 0.1 p}{\sqrt{p(1-p)}}\right) \bumpeq 2\left(1-\Phi\left(0.1 \sqrt{\frac{n p}{(1-p)}}\right)\right)
$$

Hence $\Phi\left(0.1 \sqrt{\frac{n p}{(1-p)}}\right) \bumpeq 0.975$, so $0.1 \sqrt{\frac{n p}{(1-p)}}=1.96$ and therefore $n \cong \frac{(19.6)^{2}(1-p)}{p}=$ $384.16\left(\frac{1}{p}-1\right)$.

Any value of n greater than this value will give a smaller probability for $P\left(\left|\bar{X}_{n}-p\right| \geq 0.1 p\right)$ than 0.05.

Note that $\frac{1}{p}$ is largest when p is smallest, so that we require the largest sample size for the smallest value of p. When $p=0.25$ then the sample size required so that $P\left(\left|\bar{X}_{n}-p\right| \geq\right.$ $0.1 p) \bumpeq 0.05$ is approximately $384.16 \times 3=1152.48$.

Therefore the smallest sample size N required so that $P\left(\left|\bar{X}_{n}-p\right| \geq 0.1 p\right) \leq 0.05$ for all $0.25 \leq p \leq 0.75$ and all $n \geq N$ is 1153 .

