
Probability II. Solutions to Sheet 10.

Part 1

1. Let X have vector of means µ and variance-covariance matrix V and let Y = AX.
then

µ =

(
2
5

)
, V =

(
4 −1
−1 2

)
, A =

(
1 1
1 −3

)
.

Therefore

E[Y] = Aµ =

(
1 1
1 −3

)(
2
5

)
=

(
7
−13

)

and the variance-covariance matrix for Y is

AVAT =

(
1 1
1 −3

)(
4 −1
−1 2

)(
1 1
1 −3

)
=

(
1 1
1 −3

)(
3 7
1 −7

)
=

(
4 0
0 28

)

Y1 and Y2 are linear functions of bivariate normals so are bivariate normal. Since Cov(Y1, Y2) =
0, in fact Y1 and Y2 are independent normal. Therefore Y1 ∼ N(7, 4) independent of
Y2 ∼ N(−13, 28)

2. Since Y |X = x has normal distribution with mean α + βx and variance σ2, then

E
[
etY |X = x

]
= e(α+βx)t+ 1

2
σ2t2 . Also X ∼ N(η, τ 2). Therefore MX(t) = eηt+ 1

2
τ2t2 . Hence

MY (t) = E[etY ] = E[E[etY |X]] = E
[
e(α+βX)t+ 1

2
σ2t2

]

= eαt+ 1
2
σ2t2MX(βt)

= eαt+ 1
2
σ2t2eη(βt)+ 1

2
(βt)2τ2

= e(α+βη)t+ 1
2
(σ2+β2τ2)t2

This is the m.g.f. of a normal distribution, hence Y ∼ N(α + βη, σ2 + β2τ 2).

The joint m.g.f. for X and Y is



MX,Y (s, t) = E[E[esX+tY |X]] = E[esXE[etY |X]]

= E
[
esXe(α+βX)t+ 1

2
σ2t2

]

= eαt+ 1
2
σ2t2MX(s + βt)

= eαt+ 1
2
σ2t2eη(s+βt)+ 1

2
τ2(s+βt)2

= e(ηs+(α+βη)t)+ 1
2(τ2s2+(σ2+β2τ2)t2+2stβτ2)

This is the joint m.g.f. of a bivariate normal distribution. So X and Y have bivariate
normal distribution with means η and α + βη, variances τ 2 and σ2 + β2τ 2 and covariance
βτ 2 (or equivalently coefficient of correlation βτ2√

τ2(σ2+β2τ2)
).

Part 2

3. (a) Markov’s inequality for a non-negative r.v. X with mean µ states that for any
h > 0, P (X ≥ h) ≤ µ

h
. So here we simply take h = µ + 2σ to obtain

P (X ≥ µ + 2σ) ≤ µ

µ + 2σ

So the upper bound for P (X ≥ µ + 2σ) is µ
µ+2σ

.

(b) If X has mean µ and variance σ2 then Chebyshev’s inequality states that, for any
h > 0,

P (|X − µ| ≥ h) ≤ σ2

h2

So we just need to take h = 2σ. Then Chebyshev’s inequality states that

P (|X − µ)| ≥ 2σ) ≤ σ2

(2σ)2
=

1

4

So the upper bound for P (|X − µ| ≥ 2σ) is 1
4
.

If X ∼ Exp(θ), then µ = 1
θ

and σ2 = 1
θ2 . Then:

(a) Markov’s inequality is just P
(
X ≥ 3

θ

) ≤ 1
3
. The exact probability is just



P

(
X ≥ 3

θ

)
=

∫ ∞

3
θ

θe−θxdx = e−3 = 0.04979

(b) Chebyshev’s inequality is just P
(∣∣X − 1

θ

∣∣ ≥ 2
θ

) ≤ 1
4

The exact probability is just

P

(∣∣∣∣X − 1

θ

∣∣∣∣ ≥
2

θ

)
= P

(
X ≥ 3

θ

)
+ P

(
X ≤ −1

θ

)
=

∫ ∞

3
θ

θe−θxdx = e−3 = 0.04979

4. E[Xn] = p and V ar(Xn) = p(1−p)
n

. Applying Chebyshev’s inequality to Xn, and letting
h = 0.1p gives

P (|Xn − p| ≥ 0.1p) ≤ p(1− p)/n

(0.1p)2
=

100(1− p)

np

Hence P (|Xn − p| ≥ 0.1p) ≤ 0.05 provided 100(1−p)
np

≤ 0.05, i.e. n ≥ 100(1−p)
0.05p

= 2000(1−p)
p

.

The Central Limit Theorem implies that if Z =
√

n(Xn−p)√
p(1−p)

, then for n large P (Z ≤ z) l
Φ(z) where Φ is the c.d.f. for the N(0, 1) distribution. Here we want

0.05 = P (|Xn − p| ≥ 0.1p) = P

(
|Z| ≥

√
n0.1p√

p(1− p)

)
l 2

(
1− Φ

(
0.1

√
np

(1− p)

))

Hence Φ
(
0.1

√
np

(1−p)

)
l 0.975, so 0.1

√
np

(1−p)
= 1.96 and therefore n u (19.6)2(1−p)

p
=

384.16
(

1
p
− 1

)
.

Any value of n greater than this value will give a smaller probability for P (|Xn−p| ≥ 0.1p)
than 0.05.

Note that 1
p

is largest when p is smallest, so that we require the largest sample size for the

smallest value of p. When p = 0.25 then the sample size required so that P (|Xn − p| ≥
0.1p) l 0.05 is approximately 384.16× 3 = 1152.48.

Therefore the smallest sample size N required so that P (|Xn − p| ≥ 0.1p) ≤ 0.05 for
all 0.25 ≤ p ≤ 0.75 and all n ≥ N is 1153.


