Probability II. Solutions to Problem Sheet 1.

Part 1

1. (a) If $G_{X}(t)$ is a p.g.f. then $G_{X}(1)=1$. Here $G_{X}(1)=\frac{3}{2}$. So $G_{X}(t)$ cannot be a p.g.f.
(b) $G_{X}(t)=\frac{1}{4}\left(1+t^{2}\right)^{2} . G_{X}(1)=1$ and $G_{X}(t)=\frac{1}{4}+\frac{1}{2} t^{2}+\frac{1}{4} t^{4}$, so all coefficients in the power series expansion are non-negative (with coefficients which sum to one since $G_{X}(1)=1$. Hence it is a p.g.f and the corresponding probability mass function has $P(X=0)=\frac{1}{4}, P(X=2)=\frac{1}{2}, P(X=4)=\frac{1}{4}$ and $P(X=x)=0$ for all other non-negative integer values of X.
(c) $G_{X}(t)=\frac{2}{(1+t)}$. Although $G_{X}(1)=1, G_{X}(t)$ is not a p.g.f.

You can show this by noting that $G_{X}(0)=2$ so that if $G_{X}(t)$ were a p.g.f., $P(X=$ $0)=2$, which is impossible.

Alternatively you can note that $G_{X}(t)$ is not an increasing function of t for $t \geq 0$ (in fact $G_{X}^{\prime}(t)<0$ for $\left.t \geq 0\right)$ so $G_{X}(t)$ cannot be a p.g.f.

You could also look at the power series expansion, which is

$$
G_{X}(t)=2-2 t+2 t^{2}-2 t^{3}+\ldots . .=\sum_{x=0}^{\infty} 2(-1)^{x} t^{x}
$$

Odd powers of t have negative coefficients and all probabilities must be non-negative, so $G_{X}(t)$ is not a p.g.f.
2. (a) $G_{X}(t)=\left(\frac{3}{4}+\frac{1}{4} t\right)^{3}$. This is the p.g.f. corresponding to a binomial distribution with $n=3$ and $p=\frac{1}{4}$. Hence $X \sim \operatorname{Binomial}\left(3, \frac{1}{4}\right)$.
(b) Note that $G_{X}(t)=\frac{1}{64}(3+t)^{3}=\left(\frac{3}{4}+\frac{1}{4} t\right)^{3}$, which is identical to the p.g.f. in part (a). Hence $X \sim \operatorname{Binomial}\left(3, \frac{1}{4}\right)$.
(c) $G_{X}(t)=e^{5 t-5}=e^{5(t-1)}$. This is the p.g.f. corresponding to a Poisson distribution with $\lambda=5$.
3. Let X be a random variable with probability generating function
$G_{X}(t)=\frac{t}{3-2 t}=\frac{\frac{1}{3} t}{1-\frac{2}{3} t}$. This is the p.g.f. corresponding to a geometric distribution with $p=\frac{1}{3}$. Hence $X \sim \operatorname{Geometeric}\left(\frac{1}{3}\right)$.

We can differentiate $G_{X}(t)$ to obtain $P(X=1), P(X=2), E(X)$ and $\operatorname{Var}(X)$.

$$
G_{X}^{\prime}(t)=\frac{1}{3-2 t}+\frac{2 t}{(3-2 t)^{2}}
$$

Hence $E[X]=G_{X}^{\prime}(1)=1+2=3$ and $P(X=1)=G_{X}^{\prime}(0)=\frac{1}{3}$.

$$
G_{X}^{\prime \prime}(t)=\frac{2}{(3-2 t)^{2}}+\frac{2}{(3-2 t)^{2}}+\frac{8 t}{(3-2 t)^{3}}
$$

Hence $E[X(X-1)]=G_{X}^{\prime \prime}(1)=2+2+8=12$ and so

$$
\operatorname{Var}(X)=E[X(X-1)]+E[X]-(E[X])^{2}=12+3-9=6
$$

Also $P(X=2)=\frac{1}{2} G_{X}^{\prime \prime}(0)=\frac{1}{2}\left(\frac{2}{9}+\frac{2}{9}\right)=\frac{2}{9}$.
4. $G_{X}(t)=\left(\frac{1}{2} t+\frac{1}{2}\right)$ and $G_{Y}(t)=\left(\frac{2}{3} t+\frac{1}{3}\right)$. Hence

$$
G_{Z}(t)=G_{X}(t) G_{Y}(t)=\left(\frac{1}{2} t+\frac{1}{2}\right)\left(\frac{2}{3} t+\frac{1}{3}\right)=\frac{1}{6}+\frac{1}{2} t+\frac{1}{3} t^{2}
$$

Therefore $P(Z=0)=\frac{1}{6}, P(Z=1)=\frac{1}{2}$ and $P(Z=2)=\frac{1}{3} \cdot(P(Z=z)=0$ for all other non-negative values of Z.)

Part 2

5.A. Since $G_{X}(t)=e^{\lambda(t-1)}$ and $G_{Y}(t)=e^{\mu(t-1)}$, we obtain

$$
G_{Z}(t)=G_{X}(t) G_{Y}(t)=e^{\lambda(t-1)} e^{\mu(t-1)}=e^{(\lambda+\mu)(t-1)}
$$

Since this is the p.g.f. corresponding to a Poisson distribution with parameter $(\lambda+\mu)$, we see that $Z \sim \operatorname{Poisson}(\lambda+\mu)$.

Similarly, when $W=\sum_{j=1}^{n} X_{j}$, we obtain

$$
G_{W}(t)=\prod_{j=1}^{n} G_{X_{j}}(t)=\prod_{j=1}^{n} e^{\lambda(t-1)}=e^{n \lambda(t-1)}
$$

Hence $W \sim \operatorname{Poisson}(n \lambda)$.
5.B. We differentiate $G_{X}(t)=\frac{\left(t+t^{2}\right)}{2(3-2 t)}$ to obtain $E(X)$ and $E[X(X-1)]$.

$$
G_{X}^{\prime}(t)=\frac{(1+2 t)}{2(3-2 t)}+\frac{\left(t+t^{2}\right)}{(3-2 t)^{2}}
$$

Therefore $E[X]=G_{X}^{\prime}(1)=\frac{3}{2}+2=\frac{7}{2}$. Next,

$$
G_{X}^{\prime \prime}(t)=\frac{1}{(3-2 t)}+\frac{(1+2 t)}{(3-2 t)^{2}}+\frac{(1+2 t)}{(3-2 t)^{2}}+\frac{4\left(t+t^{2}\right)}{(3-2 t)^{3}}
$$

Therefore $E[X(X-1)]=G_{X}^{\prime \prime}(1)=1+63+3+8=15$ and hence $\operatorname{Var}(X)=E[X(X-$ $1)]+E[X]-(E[X])^{2}=15+\frac{7}{2}-\frac{49}{4}=\frac{25}{4}$
5.C. We know that a Bernoulli(p) r. v. has p. g. f. of the form $q+p t$. Since $G_{X}(t)=$ $\frac{\left(t+t^{2}\right)}{2(3-2 t)}=(t+1) \times \frac{t}{2(3-2 t)}$ it is reasonable to conjecture that one of the random variables Y, Z is Bernoulli. Let us suppose that this is Y; then its p.g.f. must be given by $G_{Y}(t)=c(1+t)$, where c is a constant such that $G_{Y}(1)=1$, that is $c(1+1)=1$ and hence $c=\frac{1}{2}$. We thus see that $G_{Y}(t)=\frac{1}{2}(1+t)=\left(\frac{1}{2}+\frac{1}{2} t\right)$ in which case we must have

$$
G_{Z}(t)=\frac{G_{X}(t)}{G_{Y}(t)}=\frac{\frac{1}{3} t}{1-\frac{2}{3} t} .
$$

Hence $Y \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right)$ and $Z \sim \operatorname{Geometric}\left(\frac{1}{3}\right)$.
Then $E[X]=E[Y]+E[Z]=\frac{1}{2}+3=\frac{7}{2}$ and $\operatorname{Var}(X)=\operatorname{Var}(Y)+\operatorname{Var}(Z)=\frac{1}{4}+6=\frac{25}{4}$.
Remark. Note that you can interchange the roles of Y and Z, i. e. the other correct answer is $Z \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right)$ and $Y \sim \operatorname{Geometric}\left(\frac{1}{3}\right)$.

