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Independence

Definition. Two jointly continuous random variables X and Y are said to be independent if
fX ,Y (x,y) = fX(x) fY (y) for all x,y.

It is easy to show that X and Y are independent iff any event for X and any event for Y are
independent, i.e. for any measurable sets A and B P{(X ∈ A)∩ (Y ∈ B)}= P(X ∈ A)P(Y ∈ B).

Note X and Y cannot be independent if their ranges are dependent. Independence of X and Y
requires the support of the joint p.d.f. fX ,Y to be just the Cartesian product of the support of fX
and the support of fY .

Theorem 1. X and Y are independent iff fX ,Y (x,y) = g(x)h(y) for all x,y for some functions g
and h.

Proof. If X and Y are independent then you need only take g(x) = fX(x) and h(y) = fY (y).

If fX ,Y (x,y) = g(x)h(y) then fX(x) =
∫

∞

−∞
g(x)h(y)dy = g(x)H, where H =

∫
∞

−∞
h(y)dy. Sim-

ilarly fY (y) = h(y)G, where G =
∫

∞

−∞
g(x)dx. Since the marginal p.d.f. integrates to one you

also have HG = 1. Therefore

fX(x) fY (y) = g(x)Hh(y)G = g(x)h(y) = fX ,Y (x,y)

for all x,y. Hence X and Y are independent. 2

Note When fX ,Y (x,y) = g(x)h(y) for all x,y you can easily write down the marginal p.d.f.’s.
fX(x) = Cg(x) and fY (y) = 1

C h(y) for a suitable choice of C. You can find C by noting that the
marginal p.d.f. integrates to one.

Examples

1. fX ,Y (x,y) = 6x for 0 < x < y < 1. X and Y are not independent since the ranges are dependent.

2. fX ,Y (x,y) = 3
4 +xy for 0 < x < 1 and 0 < y < 1. In this case the ranges are not dependent but

the joint p.d.f. cannot be written in the form g(x)h(y) for any functions g and h. Hence X and Y
are not independent.

3. fX ,Y (x,y) = 2x for 0 < x < 1 and 0 < y < 1. X and Y are independent since the ranges are
not dependent and fX ,Y (x,y) = g(x)h(y) where we can choose g(x) = Cx and h(y) = 2

C . It is
easy to see that if we set C = 2 then fX(x) = g(x) = 2x for 0 < x < 1 and fY (y) = h(y) = 1 for
0 < y < 1.
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Expectation and measures over the joint distribution

In the sequel, the following important formula shall be used (no proof will be given). If a
function g(x,y is such that

∫
∞

−∞

∫
∞

−∞
|g(x,y)| fX ,Y (x,y)dxdy < ∞ then

E[g(X ,Y )] =
∫

∞

−∞

[∫
∞

−∞

g(x,y) fX ,Y (x,y)dx
]

dy =
∫

∞

−∞

[∫
∞

−∞

g(x,y) fX ,Y (x,y)dy
]

dx.

Results when X and Y are independent

Theorem 2. If X and Y are independent then E[g(X)h(Y )] = E[g(X)]E[h(Y )] for any (suitably
integrable) functions g and h.

Proof.

E[g(X)h(Y )] =
∫

∞

−∞

(∫
∞

−∞

g(x)h(y) fX(x) fY (y)dx
)

dy =
∫

∞

−∞

h(y) fY (y)
(∫

∞

−∞

g(x) fX(x)dx
)

dy

= E[g(X)]
∫

∞

−∞

h(y) fY (y)dy = E[g(X)]E[h(Y )] 2

Corollary. If X and Y are independent, Z = X +Y then MZ(t) = MX(t)MY (t). Indeed,

MZ(t) = E
[
et(X+Y )

]
= E

[
etX etY ]= E

[
etX]E

[
etY ]= MX(t)MY (t).

Example. If X and Y are independent with X ∼ Gamma(θ,α) and Y ∼ Gamma(θ,β) and
U = X +Y , then

MU(t) = MX(t)MY (t) =
(

1− t
θ

)−α(
1− t

θ

)−β

=
(

1− t
θ

)−(α+β)

This is the m.g.f. of a Gamma(θ,α + β). Hence from the uniqueness of the m.g.f., U ∼
Gamma(θ,α+β).

Joint Measures

The joint measure which is commonly used is the covariance Cov(X ,Y ) = E[(X −E[X ])(Y −
E[Y ])]≡ E[XY ]−E[X ]E[Y ]. The dimensionless form (invariant to shift and positive scaling of
X and/or Y ) is the coefficient of correlation

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X)Var(Y )
.

When X and Y are independent Cov(X ,Y ) = E[XY ]−E[X ]E[Y ] = E[X ]E[Y ]−E[X ]E[Y ] = 0.
Hence independence implies covariance (and so correlation) zero. However it is not true that
correlation zero implies independence.

Example. Let X ∼U(−1,1) and Y = X2. Then it is easily shown that E[X ] = 0, E[Y ] = E[X2] =
1
3 and E[XY ] = E[X3] = 0. Therefore Cov(X ,Y ) = 0. But clearly X and Y are not independent
but have an exact relationship. The value of X completely determines the value of Y .
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The correlation coefficient measures the degree of linear association. In the example there was
no linear relation. X did not tend to increase as Y increased (positive correlation) nor did X tend
to decrease as Y increased (negative correlation).

Example. fX ,Y (x,y) = 2 for x > 0, y > 0 and x+y < 1. Then fX(x) = 2(1−x) for 0 < x < 1 and
it is simple to show that E[X ] = 1

3 , E[X2] = 1
6 and hence Var(X) = 1

18 . Also fY (y) = 2(1− y)
for 0 < y < 1, so Y has the same marginal distribution as X . Then E[Y ] = 1

3 and Var(Y ) = 1
18 .

E[XY ] =
∫ 1

0

(∫ 1−y

0
2xydx

)
dy =

∫ 1

0
y(1− y)2dy =

1
2
− 2

3
+

1
4

=
1

12

Therefore Cov(X ,Y ) = 1
12 −

1
9 = −1

36 . Hence ρ(X ,Y ) =−1
2 .

Expectation, variance and covariance for linear functions of X and Y .

In Probability 1 you showed that E[aX +bY +c] = aE[X ]+bE[Y ]+c and Var(aX +bY +c) =
a2Var(X)+b2Var(Y )+2abCov(X ,Y ). it is simple to obtain a similar result for the covariance
of two linear functions of X and Y . Let U = aX +bY + e and V = cX +dY + f . Then

Cov(U,V ) = E[((aX +bY + e)− (aE[X ]+bE[Y ]+ e))((cX +dY + f )− (cE[X ]+dE[Y ]+ f ))]
= E[(a(X−E[X ])+b(Y −E[Y ]))(c(X−E[X ])+d(Y −E[Y ]))]
= E[ac(X−E[X ])2 +bd(Y −E[Y ])2 +(ad +bc)(X−E[X ])(Y −E[Y ])]
= acVar(X)+bdVar(Y )+(ad +bc)Cov(X ,Y )

Theorem 3. Provided Var(X) > 0 and Var(Y ) > 0, −1≤ ρ(X ,Y )≤ 1.

Proof. Set ξ = X−E(X)√
Var(X)

and η = Y−E(Y )√
Var(Y )

. Note that then

(a) E(ξ2) = E(η2) = 1. Indeed E(ξ2) = E
[

(X−E(X))2

Var(X)

]
= E[(X−E(X))2]

Var(X) = 1. The equality for η

is proved similarly.

(b) E(ξη) = E
[

(X−E(X))(Y−E(Y ))√
Var(X)Var(Y )

]
= Cov(X ,Y )√

Var(X)Var(Y )
= ρ(X ,Y ).

Consider now E((ξ− η)2) = E(ξ2− 2ξη + η2) = E(ξ2)− 2E(ξη) + E(η2) = 2− 2ρ(X ,Y ).
Hence 2−2ρ(X ,Y )≥ 0 and ρ(X ,Y )≤ 1.
Similarly, E((ξ+η)2) = E(ξ2 +2ξη+η2) = 2+2ρ(X ,Y )≥ 0 and thus ρ(X ,Y )≥−1. 2

Note. If ρ(X ,Y ) = 1, then E((ξ−η)2) = 2− 2ρ(X ,Y ) = 0 and thus ξ = η. In other words,
X−E(X)√

Var(X)
= Y−E(Y )√

Var(Y )
. We can rewrite this as Y = aX +b, where a =

√
Var(Y )√
Var(X)

, b = E(Y )−aE(X).

So there is an exact linear relation between X and Y (with positive a).

Similarly, if ρ(X ,Y ) = −1 then X−E(X)√
Var(X)

= − Y−E(Y )√
Var(Y )

and Y = aX + b, where a = −
√

Var(Y )√
Var(X)

,

b = E(Y )−aE(X). There is again an exact linear relation between X and Y (with negative a).
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Note. In lectures when we considered X and Y having a trinomial distribution with parameters
n, p and θ, we showed that ρ(X ,Y ) was negative. The extreme case where p + θ = 1 corre-
sponded to X +Y = n, i.e. Y = X−n. In this case ρ(X ,Y ) =−1. This corresponded to an exact
linear relation for Y in terms of X , where the coefficient of X was negative.

4


