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Independence

Definition. Two jointly continuous random variables X and Y are said to be independent if
fxy(x,y) = fx(x)fr(y) for all x,y.

It is easy to show that X and Y are independent iff any event for X and any event for Y are
independent, i.e. for any measurable sets A and BP{(X € A)N(Y € B)} = P(X € A)P(Y € B).

Note X and Y cannot be independent if their ranges are dependent. Independence of X and Y
requires the support of the joint p.d.f. fx y to be just the Cartesian product of the support of fx
and the support of fy.

Theorem 1. X and Y are independent iff fx y(x,y) = g(x)h(y) for all x,y for some functions g
and h.

Proof. If X and Y are independent then you need only take g(x) = fx(x) and A(y) = fr ().

If fxy(x,y) = g(x)h(y) then fx(x) = [Z, g(x)h(y)dy = g(x)H, where H = [Z_h(y)dy. Sim-
ilarly fy(y) = h(y)G, where G = [*_g(x)dx. Since the marginal p.d.f. integrates to one you
also have HG = 1. Therefore

Sx()fr (y) = g()HR(y)G = g(x)h(y) = fxy (x,y)
for all x,y. Hence X and Y are independent. O

Note When fx y(x,y) = g(x)h(y) for all x,y you can easily write down the marginal p.d.fs.
fx(x) = Cg(x) and fy(y) = £h(y) for a suitable choice of C. You can find C by noting that the

marginal p.d.f. integrates to one.
Examples
L. fxy(x,y)=6xfor0 <x<y<1.XandY are notindependent since the ranges are dependent.

2. fxy(x,y) = % +xyfor0 <x < 1and 0 <y < 1. In this case the ranges are not dependent but
the joint p.d.f. cannot be written in the form g(x)A(y) for any functions g and 4. Hence X and Y
are not independent.

3. fxy(x,y)=2xfor0<x<land 0 <y< 1. X andY are independent since the ranges are
not dependent and fx y(x,y) = g(x)h(y) where we can choose g(x) = Cx and h(y) = % It is
easy to see that if we set C = 2 then fx(x) = g(x) =2x for 0 < x < 1 and fy(y) = h(y) = 1 for

O<y<l



Expectation and measures over the joint distribution

In the sequel, the following important formula shall be used (no proof will be given). If a
function g(x,y is such that [=_ [*_|g(x,y)|fx v (x,y)dxdy < oo then
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U_Zg@vy)fxy(x,y)dy dx.

Results when X and Y are independent

Theorem 2. I[f X and Y are independent then E[g(X)h(Y)] = E[g(X)]E[h(Y)] for any (suitably
integrable) functions g and h.

Proof.
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= Elg()] [ _h0)fr0)dy = E[g(X))ELR(Y)] O

Corollary. If X and Y are independent, Z = X +Y then Mz(t) = Mx (t)My(¢). Indeed,

Mz(t) = E |6 = E[¢Xe"] = B [X] E [e] = My(1)My (1)

Example. If X and Y are independent with X ~ Gamma(6,0) and Y ~ Gamma(0,3) and
U=X+Y, then

My (t) = Mx(t)My(t) = (1 — é>_a (1 _ é)_ﬁ _ (1 B %>—(0t+ﬁ)

This is the m.g.f. of a Gamma(0,0+ B). Hence from the uniqueness of the m.g.f., U ~
Gamma(0,0.+ B).

Joint Measures

The joint measure which is commonly used is the covariance Cov(X,Y) = E[(X — E[X])(Y —
E[Y])] = E[XY] — E[X]E[Y]. The dimensionless form (invariant to shift and positive scaling of
X and/or Y) is the coefficient of correlation

Cov(X,Y)

/Var(X)Var(Y)

When X and Y are independent Cov(X,Y) = E[XY| —E[X|E[Y]| = E[X]E[Y] —E[X|E[Y] = 0.
Hence independence implies covariance (and so correlation) zero. However it is not true that
correlation zero implies independence.

p(X’Y):

Example. Let X ~ U(—1,1) and Y = X2. Then itis easily shown that E[X] =0, E[Y] = E[X?] =
1 and E[XY] = E[X?] = 0. Therefore Cov(X,Y) = 0. But clearly X and Y are not independent
but have an exact relationship. The value of X completely determines the value of Y.
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The correlation coefficient measures the degree of linear association. In the example there was
no linear relation. X did not tend to increase as Y increased (positive correlation) nor did X tend
to decrease as Y increased (negative correlation).

Example. fxy(x,y) = 2forx>0 y>0andx—|—y<1 Then fx(x) = (1 x)forO<x<1and

it is simple to show that E[X] = 1, E[X?] = ¢ and hence Var(X) = 5. Also fy(y) =2(1—y)
for 0 <y < 1, so Y has the same marginal distribution as X. Then E[Y]| = % and Var(Y) = 11—8.

Loy 1 1 2 1 1
E[XY]Z/O (/O 2xde)dy=/0y(l—y)zdyzi—?ré—t:E

Therefore Cov(X,Y) = ﬁ - é = 5—61. Hence p(X,Y) = _%_

Expectation, variance and covariance for linear functions of X and Y.

In Probability 1 you showed that E[aX +bY +c|] = aE[X|+bE[Y]+ ¢ and Var(aX +bY +c¢) =
a*Var(X) +b*Var(Y) +2abCov(X,Y). it is simple to obtain a similar result for the covariance
of two linear functions of X and Y. Let U =aX +bY +eand V = cX +dY + f. Then

Cov(U,V) = E|[((aX+bY +e)— (aE[X]|+DE[Y]+e))((cX +dY + f) — (cE[X]+dE[Y]+ f))]
= E[(a(X —E[X])+b(Y —E[Y]))(c(X — E[X]) +d(Y —E[Y]))]
= Elac(X — E[X])* +bd(Y — E[Y])* + (ad + be) (X — E[X])(Y — E[Y])]
= acVar(X)+bdVar(Y)+ (ad + bc)Cov(X,Y)

Theorem 3. Provided Var(X) > 0 and Var(Y) >0, —1 <p(X,Y) < 1.

Proof. Set § = . Note that then

\/Var ndT] \/Var

(@) E(E>)=EM?) =1. Indeed E(E?) = E [(X_E(X))z} = E[(Var()(()))z] = 1. The equality for m

is proved similarly.

_p | E=EX)Y-EX))| _ _ Cov(X)Y)
(b)E(&T])—E[ \/Var(X r(Y) } \/Var War(Y p(X’Y)'

Consider now E((§—m)?) = E(§* —2&n +n?) = E(§%) —2E(&n) + EM?) = 2 —2p(X,Y).
Hence 2 —2p(X,Y) > 0and p(X,Y) < I.
Similarly, E((§+1)?) = E(E2 +2En+1?) =2+2p(X,Y) > 0 and thus p(X,Y) > —1. O

Note. If p(X,Y) = 1, then E((§ —1)?) =2 —2p(X,Y) = 0 and thus & = 1. In other words,
XEX) _ Y_EM) e can rewrite this as ¥ = aX +b, where a = ¥.Y*) ,b=E(Y)—aE(X).

\/Var(X) o \/Var(Y). ’ Vv x)’

So there is an exact linear relation between X and Y (with positive a).

.. ) _ X-E(X) _ _Y-E(®) _ _ A/ Var(Y)
Similarly, if p(X,Y) = —1 then T = e and Y = aX + b, where a = VarX)’

b=E(Y)—aE(X). There is again an exact linear relation between X and Y (with negative a).




Note. In lectures when we considered X and Y having a trinomial distribution with parameters
n, p and 6, we showed that p(X,Y) was negative. The extreme case where p+6 = 1 corre-
sponded to X +Y =n, i.e. Y =X —n. In this case p(X,Y) = —1. This corresponded to an exact
linear relation for Y in terms of X, where the coefficient of X was negative.



