Probability 2 - Notes 6

The Trinomial Distribution

Consider a sequence of n independent trials of an experiment. The binomial distribution arises if each trial can result in 2 outcomes, success or failure, with fixed probability of success p at each trial. If X counts the number of successes, then $X \sim \operatorname{Binomial}(n, p)$.

Now suppose that at each trial there are 3 possibilities, say "success", "failure", or "neither" of the two, with corresponding probabilities $p, \theta, 1-p-\theta$, which are the same for all trials. If we write 1 for "success", 0 for "failure", and -1 for "neither", then the outcome of n trials can be described as a sequence of n numbers

$$
\omega=\left(i_{1}, i_{2}, \ldots, i_{n}\right), \text { where each } i_{j} \text { takes vales } 1,0 \text {, or }-1
$$

Obviously, $P\left(i_{j}=1\right)=p, P\left(i_{j}=0\right)=\theta P\left(i_{j}=-1\right)=1-p-\theta$.
Definition. Let X be the number of trials where 1 occurs, and Y be the number of trials where and 0 occurs. The joint distribution of the pare (X, Y) is called the trinomial distribution.

The following statement provides us with .
Theorem. The joint p.m.f. for (X, Y) is given by

$$
f_{X, Y}(k, l)=P(X=k, Y=l)=\frac{n!}{k!l!(n-k-l)!} p^{k} \theta^{l}(1-p-\theta)^{n-k-l}
$$

where $k, l \geq 0$ and $k+l \leq n$.
Proof. The sample space consists of all sequences of length n described above. If a specific sequence ω has k "successes" (1's) and l "failures" (0 's)then $P(\omega)=p^{k} \theta^{l}(1-p-\theta)^{n-k-l}$. There are $\binom{n}{k}\binom{n-k}{l}=\frac{n!}{k!!!(n-k-l)!}$ different sequences with k "successes" (1 's) and l "failures" (0 's). Hence $P(X=k, Y=l)=\frac{n!}{k!!!(n-k-l)!} p^{k} \theta^{l}(1-p-\theta)^{n-k-l}$.

The name of the distribution comes from the trinomial expansion

$$
\begin{aligned}
(a+b+c)^{n} & =(a+(b+c))^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k}(b+c)^{n-k} \\
& =\sum_{k=0}^{n} \sum_{l=0}^{n-k}\binom{n}{k}\binom{n-k}{l} a^{k} b^{l} c^{n-k-l}=\sum_{k=0}^{n} \sum_{l=0}^{n-k} \frac{n!}{k!l!(n-k-l)!} a^{k} b^{l} c^{n-k-l}
\end{aligned}
$$

$\underline{\text { Properties of the trinomial distribution }}$

1) The marginal distributions of X and Y are just $X \sim \operatorname{Binomial}(n, p)$ and $Y \sim \operatorname{Binomial}(n, \theta)$. This follows the fact that X is the number of "successes" in n independent trials with p being the probability of 'successes" in each trial. Similar argument works for Y.

Note that therefore $E[X]=n p, E[Y]=n \theta$ and $E\left[Y^{2}\right]=\operatorname{Var}(Y)+(E[Y])^{2}=n \theta(1-\theta)+n^{2} \theta^{2}$
2) If $Y=l$, then the conditional distribution of $X \mid(Y=l)$ is $\operatorname{Binomal}\left(n-l, \frac{p}{1-\theta}\right)$.

Proof.

$$
\begin{aligned}
P(X=k \mid Y=l) & =\frac{P(X=k, Y=l)}{P(Y=l)}=\frac{\frac{n!}{k!l!(n-k-l)!} p^{k} \theta^{l}(1-p-\theta)^{n-k-l}}{\frac{n!}{!!(n-l)!} \theta^{l}(1-\theta)^{n-l}} \\
& =\binom{n-l}{k}\left(\frac{p}{1-\theta}\right)^{k}\left(1-\frac{p}{1-\theta}\right)^{n-l-k}
\end{aligned}
$$

for $x=0,1, \ldots,(n-y)$. Hence $(X \mid Y=y) \sim \operatorname{Binomial}\left(n-y, \frac{p}{1-\theta}\right)$.
This is intuitively obvious. Consider those trials for which "failure" (or 0) did not occur. There are $(n-l)$ such trials, for each of which the probability that 1 occurs is actually the conditional probability of 1 given that 0 has not occurred, i.e. $\frac{p}{1-\theta}$. So you have the standard binomial set-up.
3) We shall now use the results on conditional distributions (Notes 5) and the above properties to find $\operatorname{Cov}(X, Y)$ and the coefficient of correlation $\rho(X, Y)$.

We proved that $E[X Y]=E[Y E[X \mid Y]]$ (see the last page of Notes 5). According to property 2), $E[X \mid Y=l]=(n-l) \frac{p}{1-\theta}$ and thus $E[X \mid Y]=(n-Y) \frac{p}{1-\theta}$. Hence

$$
\begin{aligned}
E[X Y] & =E\left[Y \times(n-Y) \frac{p}{(1-\theta)}\right]=\frac{p}{1-\theta} E\left(n Y-Y^{2}\right)=\frac{p}{1-\theta}\left(n^{2} \theta-n \theta(1-\theta)-n^{2} \theta^{2}\right) \\
& =\frac{p}{(1-\theta)}[n(n-1) \theta(1-\theta)]=n(n-1) p \theta
\end{aligned}
$$

Therefore $\operatorname{Cov}(X, Y)=E[X Y]-E[X] E[Y]=n(n-1) p \theta-n^{2} p \theta=-n p \theta$ and hence

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{-n p \theta}{\sqrt{n^{2} p(1-p) \theta(1-\theta)}}=-\left(\frac{p \theta}{(1-p)(1-\theta)}\right)^{\frac{1}{2}}
$$

Note that if $p+\theta=1$ then $Y=n-X$ and there is an exact linear relation between Y and X. In this case it is easily seen that $\rho(X, Y)=-1$.

Definition of the multinomial distribution

Now suppose that there are k outcomes possible at each of the n independent trials. Denote the outcomes $A_{1}, A_{2}, \ldots, A_{k}$ and the corresponding probabilities p_{1}, \ldots, p_{k} where $\sum_{j=1}^{k} p_{j}=1$. Let X_{j} count the number of times A_{j} occurs. Then

$$
P\left(X_{1}=x_{1}, \ldots, X_{k-1}=x_{k-1}\right)=\frac{n!}{x_{1}!x_{2}!\ldots x_{k-1}!\left(n-\sum_{j=1}^{k-1} x_{j}\right)!} p_{1}^{x_{1}} p_{2}^{x_{2}} \ldots p_{k-1}^{x_{k-1}} p_{k}^{n-\sum_{j=1}^{k-1} x_{j}}
$$

where $x_{1}, x_{2}, \ldots, x_{k-1}$ are non-negative integers with $\sum_{j=1}^{k-1} x_{j} \leq n$.

