Probability 2 - Notes 5

Conditional expectations E(X|Y) as random variables

Conditional expectations were discussed in lectures (see also the second part of Notes 3). The
goal of these notes is to provide a summary of what has been done so far. We start by reminding
the main definitions and by listing several results which were proved in lectures (and Notes 3).

Let X and Y be two discrete r.v.’s with a joint p.m.f. fx y(x,y) = P(X =x,Y =y). Remember
that the distributions (or the p.m.f’s) fx(x) = P(X =x) of X and fy(y) = P(Y =y) of Y are
called the marginal distributions of the pare (X,Y) and that

foyxy ) and fy(y foyxy

If fy(y) # O, the conditional p.m.f. of X|¥ =y is given by fxy(x|y) def f’}:—g)y) and the condi-
tional expectation by

E(XY =y) €Y xfxy(xly) and, more generally, E(g(X)[Y =) <Y g(x) fy (x]y),

is defined for any real valued function g(X). In particular, E(X?|Y = y) is obtained when
g(X)=X?and
Var(X|Y =y) = E(X*|Y =y) — [E(X]Y = y)].

Remark. We always suppose that Y., |g(x)] fx|y (x[y) < oo

Definition. Denote ¢(y) = E(X|Y =y). Then E(X|Y) = &f ¢(Y). In words, E(X|Y) is a random

variable which is a function of Y taking value E(X|Y =y) when Y =y.

The E(g(X)|Y) is defined similarly. In particular E (X?|Y) is obtained when g(X) = X and

Var(X|Y) = E(X?|Y) — [E(X|Y)]%.

Remark. Note that E(X|Y) is a random variable whereas E(X|Y = y) is a number (y is fixed).

Theorem 1. (i) E[E(X|Y)] = E(X).
(ii) Var(X) = Var[E(X|Y)] + E[Var(X|Y)].

Proof. See lecture or Notes 3.
Sums of random number of random variables (random sums).

Let X1,X>,X3,.... be a sequence of independent identically distributed random variables (i.i.d.
random variables), each with the same distribution, each having common mean a = E(X) and
variance 62 = Var(X). Here X is a r.v. having the same distribution as X j- The sum § = Z?]:1 X;
where the number in the sum, N is also a random variable and is independent of the X;’s. The
following statement now follows from Theorem 1.

Theorem 2. (i) E[S] = E(X) x E(N) = aE(N).
(i) Var(S) = Var(X) x E(N) + [E(X)]? x Var(N) = 6?E(N) + a*Var(N).



Proof. (i) Since E[S|N = n] = E[Y;_ X;] = Y¥_, E[X;] = an, we obtain that E[S|N]] = aN (by
the definition! of E[S|N]]). But then, from (i) of Theorem 1, we obtain that E[S] = E[E[S|N]] =
E[aN] = aEI[N]. O

(ii) Similarly Var(S|N = n) = Var[yi_, X;] = no? and hence Var(S|N) = 6N. By Theorem 1,
(i1) we have that

Var(S) = E[Var(S|N)] + Var(E[S|N]) = E[NG*] + Var(aN) = 6*E[N] + a*Var(N).

O

Example: finding E(Y,) and Var(Y,) for a branching process.
Remember thata BP Y,,, n =0, 1, 2,..., is defined by ¥y = 1 and
YVoor =X x4+ . +X§:),

where r.v.’s X ;n) are independent of each other and have the same distribution as a given integer-

valued r.v. X.
Theorem 2 can be used in order to prove the following statements:

Suppose that E(X) = u, Var(X) = 6. Then:
(i) E(Yn) = "

. . 62[1’171(1—/.1") . . 2
(i))If u # 1, then Var(Y,) = - Wfu=1then Var(Y,) = nc-.

Proof. Was given in lectures (and a different proof can be found in Notes 4).
Some additional properties of conditional expectations.

1. If X and Y are independent r.v.’s then E(X|Y) = E(X).
Proof. As we know, X and Y are independent if and only if fx y(x,y) = fx(x)fr(y) or, equiva-

lently, fxy(x[y) = fx(x). But then E(X|Y =y) = ¥, xfxy (x[y) = Lexfx (x) = E(X). O

2. EIE(g(X)|Y)] = E(8(X))
Proof. Set Z = g(X). Statement (i) of Theorem 1 applies to any two r.v.’s. Hence, applying it
to Z and Y we obtain E[E(Z|Y)] = E(Z) which is the same as E[E(g(X)|Y)] = E(g(X)). O

This property may seem to be more general statement than (i) in Theorem 1. The proof above
shows that in fact these are equivalent statements.

3. E(XY|Y) =YE(X|Y).
Proof. E(XY|Y =y)=E(yX|Y =y) =yE(X|Y =y) (because y is a constant). Hence, E(XY|Y) =
YE(X|Y) by the definition of the conditional expectation. O

Corollary. E(XY) =E[YE(X|Y)]. Proof. E(XY)=E[E(XY|Y)|=E[YE(X|Y)]. O

Exercise. Use the same method to prove that E(Xh(Y)|Y) = h(Y)E(X|Y) for any real valued
function A(y).



