
Probability 2 - Notes 4

Branching Processes
The informal definition of a branching process (BP) has been discussed in the lecture. Here we
give only the formal definition.

Definition Let X be an integer-valued non-negative r.v. with p.m.f. pk = P{X = k}, k =
0, 1, 2, .... We say that a sequence of random variable Yn, n = 0, 1, 2, ..., is a BP if
1. Y0 = 1
2. Yn+1 = X (n)

1 +X (n)
2 + ...+X (n)

Yn
,

where all r.v.’s X (n)
j have the same distribution as X and are independent of each other.

We say that distribution of X is the generating distribution of the BP.

This definition in fact describes one of the simplest models for population growth. The process
starts at time 0 with one ancestor: Y0 = 1. At time n = 1 this ancestor dies producing a random
number of descendants Y1 = X (0)

1 . Each descendant behaves independently of the others living
only until n = 2 and being then replaced by his own descendants. This process continues at
n = 3, 4, .... Thus, Yn+1 is the number of descendants in the (n + 1)th generation produced by
Yn individuals of generation n.

The meaning of the notations we use should by now be clear: X (n)
j is the number of descendants

produced by the jth ancestor of the nth generation.

As we see, the r.v. X defined above specifies the number of offspring of an individual. We
denote E(X) = µ and Var(X) = σ2. We denote by G(t) the p.g.f. of X :

G(t) = E(tX) = p0 + p1t + p2t2 + ... =
∞

∑
j=0

p j t j. (1)

Our plan now is as follows:

1. We shall find the recurrence relations for the probability generating functions Gn(t) of Yn.

2. This will imply the recurrence relations for the probability of extinction θn
def= P{Yn = 0} of

the BP by time n.
3. We shall then find the probability of ultimate extinction θ = limn→∞ θn of the BP.
4. We shall also find E(Yn) and Var(Yn).
5. In principle, the whole distribution of Yn can be computed from Gn(t) but the examples where
this can be done explicitly are rare. We shall look at one such example.

1. Finding the probability generating function of Yn

Theorem 1. The probability generating functions Gn(t) of the r.v.’s Yn satisfy the following
recurrence relations:

G1(t) = G(t), (2)

Gn+1(t) = G(Gn(t)) for n≥ 1. (3)
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Proof. By definition Y1 has the same distribution as X and this proves (2). Next, by the TPF for
expectations

Gn+1(t) = E(tYn+1) =
∞

∑
j=0

E(tYn+1|Y1 = j)P(Y1 = j)

or in concise notations

Gn+1(t) =
∞

∑
j=0

E(tYn+1|Y1 = j)p j. (4)

Note next that
Yn+1|(Y1 = j) = Y (1)

n + ...+Y ( j)
n

where Y (i)
n is the number of descendants in generation n + 1 who descended from the i th indi-

vidual in generation 1. At the same time Y (i)
n is the number of nth generation descendants of the

i th ancestor in generation 1 and hence has the same distribution as Yn in the original process.
We thus have:

E(tYn+1|Y1 = j) = EtY (1)
n +...+Y ( j)

n = EtY (1)
n × ...×EtY ( j)

n = (EtYn) j.

We use here the fact that tY (1)
n , ..., tY ( j)

n are independent r.v.’s and therefore the expectation of
their product is equal to the product of their expectations. Remember that E(tYn) = Gn(t). We
have shown that

E(tYn+1|Y1 = j) = (Gn(t)) j.

Substituting this expression into (4) gives

Gn+1(t) =
∞

∑
j=0

p j(Gn(t)) j. (5)

Comparing (1) and (5) we conclude that

Gn+1(t) = G(Gn(t)) .
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Remark In fact (3) holds also for n = 0 since G0(t) = t.

2. Finding the probability of extinction

Remember that (see Notes 1 or corresponding lecture) if Z is a non-negative integer-valued r.v.
and GZ(t) is its p.g.f. then P{Z = 0}= GZ(0).

This means that in our case θn = Gn(0) for n = 1,2, .... Hence putting t = 0 in (3) gives

θn+1 = Gn+1(0) = G(Gn(0)) = G(θn) (6)

Since θ1 = p0 we can then iteratively obtain θn for n = 2,3, ...

Remark (6) holds also for n = 0 since G0(t) = t. In fact we could start with n = 0. Indeed,
θ0 = 0 and hence p0 = G1(0) = θ1.

Example. Suppose X ∼ Bernoulli(p) so that G(t) = pt +q. Then
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θ1 = G(θ0) = GX(0) = q = 1− p
θ2 = G(θ1) = GX(q) = pq+q = 1− p2

θ3 = G(θ2) = GX(1− p2) = p(1− p2)+(1− p) = 1− p3

and you can show using induction that θn = 1− pn for n = 0,1,2, .... Taking the limit as n tends
to infinity gives the probability of eventual extinction θ. Here θ = limn→∞ θn = 1.

Note that for this very simple example you can obtain the result directly. In each generation
there can at most be one individual and P(Yn = 1) is just the probability that the individual in
each generation has one offspring, so that P(Yn = 1) = pn and therefore θn = P(Yn = 0) = 1− pn.

3. Finding the probability of ultimate (eventual) extinction

We only consider the case where 0 < P(X = 0) < 1 since the other two cases are trivial. If
P(X = 0) = 1 then the process is certain to die out by generation 1 so that θ = 1. If P(X = 0) = 0
then the process cannot possibly die out and θ = 0.

Theorem 2. When 0 < P(X = 0) < 1 the probability of eventual extinction is the smallest
positive solution of t = G(t).

Proof. We first establish that θ j+1 > θ j for all j = 1,2, .... Indeed, G(t) is a strictly increasing
function of t. Now θ1 = G(0) > 0. Hence θ2 = G(θ1) > G(0) = θ1. Assume that θ j > θ( j−1) for
all j = 2, ...,n. Then θn+1 = G(θn) > G(θn−1) = θn. Hence the statement follows by induction.
Thus θn is a strictly increasing function of n which is bounded above by 1. Hence it must tend
to a limit as n tends to infinity. We shall call this limit θ = limn→∞ θn. Since θn+1 = G(θn), it
immediately follows that limn→∞ θn+1 = limn→∞ G(θn) and hence θ = G(θ).

Let z be any positive solution of z = G(z). It remains to prove that prove that θ≤ z. Now z > 0
and so z = G(z) > G(0) = θ1. Then z = G(z) > G(θ1) = θ2. Now assume that z > θ j for all
j = 1, ...,n. Then z = G(z) > G(θn) = θn+1. Hence by induction z > θ j for all j = 1,2, ... and
therefore z ≥ θ. Since the last inequality holds for any positive solution z to z = G(z), θ must
be the smallest positive solution.
2

Note that t = 1 is always a solution to G(t) = t.

Example. P(X = x) = 1/4 for x = 0,1,2,3. Therefore G(t) = (1 + t + t2 + t3)/4. We need
to solve t = G(t), i.e. t3 + t2 − 3t + 1 = 0 i.e. (t − 1)(t2 + 2t − 1) = 0. The solutions are
t = 1,

√
2−1,−√2−1. Hence the smallest positive root is

√
2−1 so the probability of eventual

extinction θ =
√

2−1.

Remark. Very often it may be important to know whether θ = 1. It turns out that this is the
case if and only if µ≤ 1.

4. Finding the mean and variance for Yn

Theorem 3. E(Yn) = µn.
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Proof. We shall use the well known formula E(Yn) = G′
n(1) and the fact that Gn(1) = 1 for any

n≥ 0 (see, e. g. Notes 1). Next (3) can be written as Gn(t) = G(Gn−1(t)). Differentiating this
equality and employing the usual rules for differentiating of a composite function we obtain:

E(Yn) = G′
n(1) = G′(Gn−1(1))G′

n−1(1) = G′(1)G′
n−1(1) = µE(Yn−1).

Since E[Y0] = 1, we obtain

E[Yn] = µE[Yn−1] = µ2E[Yn−2] = ... = µnE[Y0] = µn.
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Theorem 4.If µ 6= 1, then Var(Yn) = σ2µn−1(1−µn)
(1−µ) . If µ = 1 then Var(Yn) = nσ2.

Proof. This time, apart of what has already been used in the proof of Theorem 3, we shall
use one more well known formula. Namely Var(Yn) = G′′

n(1)+G′
n(1)− (G′

n(1))2. To simplify
the notation, we write Vn for Var(Yn). Since we already know that G′

n(1) = µn, we have Vn =
G′′

n(1)+µn−µ2n. The last relation can be rearranged as

G′′
n(1) = Vn−µn +µ2n (7)

and will be used in this form. Next, we also have

G′′
n(t) = (G′(Gn−1(t))G′

n−1(t))
′ = G′′(Gn−1(t))(G′

n−1(t))
2 +G′(Gn−1(t))G′′

n−1(t)

and hence

G′′
n(1) = G′′(1)(G′

n−1(1))2 +G′(1)G′′
n−1(1) = µ2n−2G′′(1)+µG′′

n−1(1). (8)

We can now obtain a recurrence relation between Vn and Vn−1 by replacing all second order
derivatives in (8) using (7):

Vn−µn +µ2n = µ2n−2(V1−µ+µ2)+µ(Vn−1−µn−1 +µ2(n−1))

which, after cancelations, simplifies to

Vn = µ2n−2σ2 +µVn−1, (9)

where we also made use of V1 = Var(Y1) = Var(X) = σ2.

The proof can now be completed by induction. For n = 1 the statement of the theorem reduces
to Var(Y1) = σ2 which obviously is true. Suppose that it has been established for Var(Yj),
j = 2, ...,n. It the follows from (9) that

Var(Yn+1) = µ2nσ2 +µ
σ2µn−1(1−µn)

(1−µ)
=

σ2µn(1−µn+1)
(1−µ)

.
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Example X ∼Bernoulli(p), where 0 < p < 1. Then µ = E[X ] = p and σ2 =Var(X) = p(1− p).
Hence µ 6= 1 so that E[Yn] = pn and Var(Yn) = p(1−p)pn−1(1−pn)

(1−p) = pn(1− pn)
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5. Finding the distribution of Yn

If we know the distribution for X (i.e. the offspring distribution) then we can use the p.g.f. of
X to successively find the p.g.f. Gn(t) of Yn for n = 1,2, ... as formulae (2) and (3) suggest. In
principle, once Gn(t) has been found, we can compute P(Yn = k) = 1

k!G
(k)
n (0). However, this

may be a difficult thing to do.

Example 1. X ∼ Bernoulli(p). G(t) = pt +q. Then

G1(t) = G(t) = pt +q so Y1 ∼ Bernoulli(p).

G2(t) = G(G1(t)) = p(pt +q)+q = p2t +(1− p2). Hence Y2 ∼ Bernoulli(p2).

It is easily shown by induction that, for this very simple example, Yn ∼ Bernoulli(pn).

Example 2. X ∼ Geometric(1
2). In this case G1(t) = G(t) = ∑∞

k=0
1

2k+1 tk = 1
2−t . Then

G2(t) = G(G1(t)) = 1
2− 1

2−t
= 2−t

3−2t .

G3(t) = G(G2(t)) = 1
2− 2−t

3−2t
= 3−2t

4−3t .

It is reasonable to conjecture that Gn(t) = n−(n−1)t
n+1−nt . The fact that this is true can now be easily

verified by induction. It is also not difficult to see that

P(Yn = 0) =
n

n+1
and P(Yn = k) =

nk−1

(n+1)k+1 for k ≥ 1.

In particular we see that θn = n
n+1 and θ = limn→∞ θn = 1.

6. A note on the case of k ancestors

Each ancestor generates its own independent branching process. If we let W j be the number of
descendants in generation n generated by the jth ancestor, then the total number in generation n
is W = ∑k

j=1W j. The Wj are independent identically distributed random variables. Each Wj has
the same distribution as Yn, the number in generation n from one ancestor (i.e. with Y0 = 1).

Therefore E[W ] = kE[Yn] and Var(W ) = kVar(Yn).

If the branching process is extinct by generation n, then each of the k branching generated by
the k ancestors must be extinct by generation n, so

P(W = 0) = P(W1 = 0,W2 = 0, ...,Wk = 0) =
k

∏
j=1

P(Wj = 0) = θk
n

So the probability of extinction by generation n when there are k ancestors is just θk
n.

The probability of eventual extinction is just the probability that each of the k independent
branching processes eventually become extinct. Since the branching processes are independent,

5



this is just the product of the probabilities that each of individual branching processes eventually
become extinct, which is θk.
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