
Probability 2 - Notes 2

Conditional probability

Definition If A and B are events and P(B) > 0 then we define the conditional probability of A
given B to be

P(A|B) =
P(A∩B)

P(B)

Definition Events B1, ...,Bn are said to partition the sample space S if ∪n
i=1Bi = S and Bi∩B j =

φ for all i 6= j. (So the events are mutually exclusive and exhaustive)

The law of total probability

Let E be an event in S and let B1, ...,Bn partition S. Then

P(E) =
n

∑
j=1

P(E|B j)P(B j)

You derived this result and looked at simple examples using this law in Probability 1

Example: A fair dice is thrown twice. Find P(E) where E is the event that the product of the
numbers on the die from the first and second throw is even. Let B1 be the event that the number
on the first throw is odd and B2 be the event that the number on the first throw is even. then
B1,B2 is a partition of S. P(B1) = P(B2) = 1

2 . If the number on the first throw is even then the
product is certain to be even. So P(E|B1) = 1. If the number on the first throw is odd, then the
product will be even if the number on the second throw is even, so P(E|B2) = 1

2 . Hence

P(E) = P(E|B1)P(B1)+P(E|B2)P(B2) = 1× 1
2

+
1
2
× 1

2
=

3
4

Use of the law of total probability for sequences of independent trials or games

Consider an independent sequence of throws of a die. We throw the die until the number on the
die is either a 6 or is less than or equal to 2, when we stop. Let E be the event that we stop with
a throw of 6. Find P(E). A useful approach is to look back to the first throw of the die. Let B1,
B2 and B3 correspond to the event that the first throw gives respectively 6, less than or equal to
2 and neither 6 nor less than or equal to 2. Then B1,B2,B3 is a partition.

P(E) = P(E|B1)P(B1)+P(E|B2)P(B2)+P(E|B3)P(B3)

Now P(B1) = 1
6 , P(B2) = 1

3 and P(E3) = 1
2 . Also P(E|B1) = 1 and P(E|B2) = 0. If B3 occurs

then after the first throw we are essentially in the same situation statistically as we were at the



outset. We have a sequence of independent throws and will continue until the number thrown
equals 6 or is less than 2. So P(E|B3) = P(E). Hence

P(E) =
1
6

+P(E)
1
2

Therefore solving gives P(E) = 1
3 .

An application of this method is the gambler’s ruin problem.

The gambler’s ruin problem.

A gambler starts with a gambling pot or fund of k units of money. He plays a sequence of
games. At each game he bets one unit and has a probability p of winning (in which case he
receives 1 unit in addition to the 1 unit bet) and probability q = 1− p of losing (in which case
he loses the 1 unit bet). He decides that he will stop if his pot/fund either grows to N units or
declines to M units (in the original problem M = 0 so he goes broke i.e. is ruined). Let Ek be
the event that when he stops he has reached N units and let rk = P(Ek).

We condition on the first outcome, so B1 and B2 are the events ’wins the first game’ and ’loses
the first game’. Then

rk = P(Ek|B1)P(B1)+P(Ek|B2)P(B2)

If B1 occurs then the gambler’s stake has increased to k + 1 and he is in the same situation as
initially but with more stake money. Similarly if B2 occurs he simply has less stake money
(k− 1 units). Hence P(Ek|B1) = P(Ek+1) = rk+1 and P(Ek|B2) = P(Ek−1) = rk−1. Therefore
rk = prk+1 +qrk−1. This is just a simple second order difference equation

prk+1− rk +qrk−1 = 0

which holds for M < k < N. Note that rN = 1 and rM = 0 because the gambler stops immediately
with a stake of M or N.

The associated quadratic is pθ2−θ+q = 0 which has roots θ = 1 and θ = q
p . The roots will be

equal if p = q = 1
2 .

Case when p 6= 1
2 . The solution to the difference equation is

rk = A(1)k +B
(

q
p

)k

= A+B
(

q
p

)k

Since 0 = rM = A+B
(

q
p

)M
and 1 = rN = A+B

(
q
p

)N
, we obtain the solution



rk =

(
q
p

)k
−

(
q
p

)M

(
q
p

)N
−

(
q
p

)M

Case p = 1
2 . The solution to the difference equation is rk = (A + Bk)(1)k = A + Bk. Since

0 = rM = A+BM and 1 = rN = A+BN, we obtain the solution

rk =
k−M
N−M

Similarly if we let Fk be the event that the gambler has only M units when he stops playing and
if lk = P(Fk). Then lk satisfies the same difference equation as rk but the boundary conditions
are different since lM = 1 and lN = 0.

Case when p 6= 1
2 . The solution is

lk =

(
q
p

)N
−

(
q
p

)k

(
q
p

)N
−

(
q
p

)M

Note that rk + lk = 1 so the series of games are certain to finish.

Case p = 1
2 . The solution is

lk =
N− k
N−M

Again rk + lk = 1.

If we indicate in the notation the boundaries M and N then we replace rk by rk(M,N) and lk by
lk(M,N) in the results above.

Note. The gambler’s ruin problem is a special case of a random walk, which is a stochastic
process. Here ’time’ is the game number, so is discrete. For a random walk in discrete time
the position at time n is Yn where Yn = Yn−1 + Xn. Here Yn−1 is the position at time n− 1 and
Xn is an independent increment. The X j are i.i.d (independent identically distributed) random
variables. If Y0 is the starting position then Yn = Y0 +∑n

j=1 X j. There may be boundaries for the
random walk (as in the gambler’s ruin problem). The walk stops if the boundaries are reached.

The change in the gambler’s stake after game j is a random variable X j with P(X j = 1) = p and
P(X j =−1)= q. If Yn is the amount he has immediately after the nth game then Yn = k+∑n

j=1 X j.
This will only hold whilst the game is continuing. Once he reaches the boundary M or N the
gambler stops playing. The ’stopping rule’ implies that the number of games T played is a
random variable. T = min{ j : Y j = M or Y j = N}.


