Probability 2 - Notes 2

Conditional probability
Definition If A and B are events and $P(B)>0$ then we define the conditional probability of A given B to be

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Definition Events B_{1}, \ldots, B_{n} are said to partition the sample space S if $\cup_{i=1}^{n} B_{i}=S$ and $B_{i} \cap B_{j}=$ ϕ for all $i \neq j$. (So the events are mutually exclusive and exhaustive)

The law of total probability

Let E be an event in S and let B_{1}, \ldots, B_{n} partition S. Then

$$
P(E)=\sum_{j=1}^{n} P\left(E \mid B_{j}\right) P\left(B_{j}\right)
$$

You derived this result and looked at simple examples using this law in Probability 1
Example: A fair dice is thrown twice. Find $P(E)$ where E is the event that the product of the numbers on the die from the first and second throw is even. Let B_{1} be the event that the number on the first throw is odd and B_{2} be the event that the number on the first throw is even. then B_{1}, B_{2} is a partition of S. $P\left(B_{1}\right)=P\left(B_{2}\right)=\frac{1}{2}$. If the number on the first throw is even then the product is certain to be even. $\operatorname{So} \mathrm{P}\left(E \mid B_{1}\right)=1$. If the number on the first throw is odd, then the product will be even if the number on the second throw is even, so $P\left(E \mid B_{2}\right)=\frac{1}{2}$. Hence

$$
P(E)=P\left(E \mid B_{1}\right) P\left(B_{1}\right)+P\left(E \mid B_{2}\right) P\left(B_{2}\right)=1 \times \frac{1}{2}+\frac{1}{2} \times \frac{1}{2}=\frac{3}{4}
$$

Use of the law of total probability for sequences of independent trials or games

Consider an independent sequence of throws of a die. We throw the die until the number on the die is either a 6 or is less than or equal to 2, when we stop. Let E be the event that we stop with a throw of 6 . Find $P(E)$. A useful approach is to look back to the first throw of the die. Let B_{1}, B_{2} and B_{3} correspond to the event that the first throw gives respectively 6 , less than or equal to 2 and neither 6 nor less than or equal to 2 . Then B_{1}, B_{2}, B_{3} is a partition.

$$
P(E)=P\left(E \mid B_{1}\right) P\left(B_{1}\right)+P\left(E \mid B_{2}\right) P\left(B_{2}\right)+P\left(E \mid B_{3}\right) P\left(B_{3}\right)
$$

Now $P\left(B_{1}\right)=\frac{1}{6}, P\left(B_{2}\right)=\frac{1}{3}$ and $P\left(E_{3}\right)=\frac{1}{2}$. Also $P\left(E \mid B_{1}\right)=1$ and $P\left(E \mid B_{2}\right)=0$. If B_{3} occurs then after the first throw we are essentially in the same situation statistically as we were at the
outset. We have a sequence of independent throws and will continue until the number thrown equals 6 or is less than 2 . So $P\left(E \mid B_{3}\right)=P(E)$. Hence

$$
P(E)=\frac{1}{6}+P(E) \frac{1}{2}
$$

Therefore solving gives $P(E)=\frac{1}{3}$.
An application of this method is the gambler's ruin problem.

The gambler's ruin problem.

A gambler starts with a gambling pot or fund of k units of money. He plays a sequence of games. At each game he bets one unit and has a probability p of winning (in which case he receives 1 unit in addition to the 1 unit bet) and probability $q=1-p$ of losing (in which case he loses the 1 unit bet). He decides that he will stop if his pot/fund either grows to N units or declines to M units (in the original problem $M=0$ so he goes broke i.e. is ruined). Let E_{k} be the event that when he stops he has reached N units and let $r_{k}=P\left(E_{k}\right)$.

We condition on the first outcome, so B_{1} and B_{2} are the events 'wins the first game' and 'loses the first game'. Then

$$
r_{k}=P\left(E_{k} \mid B_{1}\right) P\left(B_{1}\right)+P\left(E_{k} \mid B_{2}\right) P\left(B_{2}\right)
$$

If B_{1} occurs then the gambler's stake has increased to $k+1$ and he is in the same situation as initially but with more stake money. Similarly if B_{2} occurs he simply has less stake money ($k-1$ units). Hence $P\left(E_{k} \mid B_{1}\right)=P\left(E_{k+1}\right)=r_{k+1}$ and $P\left(E_{k} \mid B_{2}\right)=P\left(E_{k-1}\right)=r_{k-1}$. Therefore $r_{k}=p r_{k+1}+q r_{k-1}$. This is just a simple second order difference equation

$$
p r_{k+1}-r_{k}+q r_{k-1}=0
$$

which holds for $M<k<N$. Note that $r_{N}=1$ and $r_{M}=0$ because the gambler stops immediately with a stake of M or N.

The associated quadratic is $p \theta^{2}-\theta+q=0$ which has roots $\theta=1$ and $\theta=\frac{q}{p}$. The roots will be equal if $p=q=\frac{1}{2}$.

Case when $p \neq \frac{1}{2}$. The solution to the difference equation is

$$
r_{k}=A(1)^{k}+B\left(\frac{q}{p}\right)^{k}=A+B\left(\frac{q}{p}\right)^{k}
$$

Since $0=r_{M}=A+B\left(\frac{q}{p}\right)^{M}$ and $1=r_{N}=A+B\left(\frac{q}{p}\right)^{N}$, we obtain the solution

$$
r_{k}=\frac{\left(\frac{q}{p}\right)^{k}-\left(\frac{q}{p}\right)^{M}}{\left(\frac{q}{p}\right)^{N}-\left(\frac{q}{p}\right)^{M}}
$$

Case $p=\frac{1}{2}$. The solution to the difference equation is $r_{k}=(A+B k)(1)^{k}=A+B k$. Since $0=r_{M}=A+B M$ and $1=r_{N}=A+B N$, we obtain the solution

$$
r_{k}=\frac{k-M}{N-M}
$$

Similarly if we let F_{k} be the event that the gambler has only M units when he stops playing and if $l_{k}=P\left(F_{k}\right)$. Then l_{k} satisfies the same difference equation as r_{k} but the boundary conditions are different since $l_{M}=1$ and $l_{N}=0$.

Case when $p \neq \frac{1}{2}$. The solution is

$$
l_{k}=\frac{\left(\frac{q}{p}\right)^{N}-\left(\frac{q}{p}\right)^{k}}{\left(\frac{q}{p}\right)^{N}-\left(\frac{q}{p}\right)^{M}}
$$

Note that $r_{k}+l_{k}=1$ so the series of games are certain to finish.
Case $p=\frac{1}{2}$. The solution is

$$
l_{k}=\frac{N-k}{N-M}
$$

Again $r_{k}+l_{k}=1$.
If we indicate in the notation the boundaries M and N then we replace r_{k} by $r_{k}(M, N)$ and l_{k} by $l_{k}(M, N)$ in the results above.

Note. The gambler's ruin problem is a special case of a random walk, which is a stochastic process. Here 'time' is the game number, so is discrete. For a random walk in discrete time the position at time n is Y_{n} where $Y_{n}=Y_{n-1}+X_{n}$. Here Y_{n-1} is the position at time $n-1$ and X_{n} is an independent increment. The X_{j} are i.i.d (independent identically distributed) random variables. If Y_{0} is the starting position then $Y_{n}=Y_{0}+\sum_{j=1}^{n} X_{j}$. There may be boundaries for the random walk (as in the gambler's ruin problem). The walk stops if the boundaries are reached.

The change in the gambler's stake after game j is a random variable X_{j} with $P\left(X_{j}=1\right)=p$ and $P\left(X_{j}=-1\right)=q$. If Y_{n} is the amount he has immediately after the $n^{\text {th }}$ game then $Y_{n}=k+\sum_{j=1}^{n} X_{j}$. This will only hold whilst the game is continuing. Once he reaches the boundary M or N the gambler stops playing. The 'stopping rule' implies that the number of games T played is a random variable. $T=\min \left\{j: Y_{j}=M\right.$ or $\left.Y_{j}=N\right\}$.

