Probability 2 - Notes 2

Conditional probability

Definition If A and B are events and P(B) > 0 then we define the conditional probability of A
given B to be

P(ANB)

PAIB) =~

Definition Events By, ..., B, are said to partition the sample space Sif U?_ | B; =S and B;NB; =
0 for all i # j. (So the events are mutually exclusive and exhaustive)

The law of total probability

Let E be an event in S and let By, ..., B, partition S. Then
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You derived this result and looked at simple examples using this law in Probability 1

Example: A fair dice is thrown twice. Find P(E) where E is the event that the product of the
numbers on the die from the first and second throw is even. Let B be the event that the number
on the first throw is odd and B, be the event that the number on the first throw is even. then
Bi1,B; is a partition of S. P(B1) = P(B2) = 1 . If the number on the first throw is even then the
product is certain to be even. So P(E|B;) = 1 If the number on the first throw is odd, then the
product will be even if the number on the second throw is even, so P(E|B,) = 4. Hence
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P(E) = P(E|B\)P(B)) + P(E|B2)P(B,) = 1 x Z
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Use of the law of total probability for sequences of independent trials or games

Consider an independent sequence of throws of a die. We throw the die until the number on the
die is either a 6 or is less than or equal to 2, when we stop. Let E be the event that we stop with
a throw of 6. Find P(E). A useful approach is to look back to the first throw of the die. Let By,
B> and B3 correspond to the event that the first throw gives respectively 6, less than or equal to
2 and neither 6 nor less than or equal to 2. Then By, B,, B3 is a partition.

P(E) = P(E|B))P(B)+ P(E|By)P(B,) + P(E|B3)P(B3)

Now P(By) = ¢, P(By) = % and P(E3) = . Also P(E|B;) = 1 and P(E|B,) = 0. If B3 occurs
then after the first throw we are essentially in the same situation statistically as we were at the



outset. We have a sequence of independent throws and will continue until the number thrown
equals 6 or is less than 2. So P(E|B3) = P(E). Hence

Therefore solving gives P(E) = %

An application of this method is the gambler’s ruin problem.

The gambler’s ruin problem.

A gambler starts with a gambling pot or fund of k units of money. He plays a sequence of
games. At each game he bets one unit and has a probability p of winning (in which case he
receives 1 unit in addition to the 1 unit bet) and probability ¢ = 1 — p of losing (in which case
he loses the 1 unit bet). He decides that he will stop if his pot/fund either grows to N units or
declines to M units (in the original problem M = 0 so he goes broke i.e. is ruined). Let E; be
the event that when he stops he has reached N units and let r, = P(E).

We condition on the first outcome, so By and B are the events *wins the first game’ and ’loses

the first game’. Then

1w = P(Ex|B1)P(B1) + P(Eg|B2)P(B2)

If B occurs then the gambler’s stake has increased to K+ 1 and he is in the same situation as
initially but with more stake money. Similarly if B> occurs he simply has less stake money
(k— 1 units). Hence P(Ey|By) = P(E+1) = ry+1 and P(Ex|By) = P(E;_1) = ry_1. Therefore
ry = prr+1 + qrr—1. This is just a simple second order difference equation

Priv1 —retqre-1=0

which holds for M < k < N. Note that ry = 1 and ry; = 0 because the gambler stops immediately
with a stake of M or N.

The associated quadratic is p8% — 8 + g = 0 which has roots 6 = 1 and 6 = %. The roots will be
equalif p=¢g = %

Case when p # % The solution to the difference equation is

re=A(1)*+B (%)k —A+B <;>k
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Since0=ry =A+B (%) andl =ry=A+B (%) , we obtain the solution

BN



Case p = 5. The solution to the difference equation is ry = (A + Bk)(1)¥ = A+ Bk. Since
O=ry=A+BM and 1 = ry = A + BN, we obtain the solution

k —
N —

<

ry =

<

Similarly if we let Fj be the event that the gambler has only M units when he stops playing and
if [, = P(Fy). Then I, satisfies the same difference equation as ry but the boundary conditions
are different since [y = 1 and Iy = 0.

Case when p # % The solution is

() ()
() -()"

Note that ry 4+ [y = 1 so the series of games are certain to finish.

I =

Case p = % The solution is

Againry+ [ = 1.

If we indicate in the notation the boundaries M and N then we replace ry by ri(M,N) and [; by
I(M,N) in the results above.

Note. The gambler’s ruin problem is a special case of a random walk, which is a stochastic
process. Here ’time’ is the game number, so is discrete. For a random walk in discrete time
the position at time n is ¥;, where ¥,, =Y,,_1 + X,,. Here Y,_; is the position at time n — 1 and
Xy, is an independent increment. The X are i.i.d (independent identically distributed) random
variables. If ¥ is the starting position then Y,, = Yy + Z’}Zl X;. There may be boundaries for the
random walk (as in the gambler’s ruin problem). The walk stops if the boundaries are reached.

The change in the gambler’s stake after game j is a random variable X; with P(X; = 1) = p and
P(Xj=—1) =gq. If Y, is the amount he has immediately after the n'" game then Y, = k+Yi 1 X;.
This will only hold whilst the game is continuing. Once he reaches the boundary M or N the
gambler stops playing. The ’stopping rule’ implies that the number of games T played is a
random variable. T =min{j: Y; =M orY; = N}.



