
Probability 2 - Notes 13

Continuous n-dimensional random variables

The results for two random variables are now extended to n random variables.

Definition Random variables X1, ...Xn are said to be jointly continuous if they have a joint
p.d.f. which is defined to be a function fX1,X2,...,Xn(x1, ...,xn) such that for any measurable set A
contained in ℜn,

P((X1, ...,Xn) ∈ A) =
∫

...
∫

(x1,...,xn)∈A
fX1,X2,...,Xn(x1, ...,xn)dx1...dxn

It is convenient to write the joint p.d.f. using vector notation as fX(x), where X and x are
n-vectors with ith entries Xi and xi respectively.

To obtain a marginal p.d.f. simply integrate out the variables which are not required.

Example fX ,Y,Z(x,y,z) = 3 for 0 < x < z, 0 < y < z and 0 < z < 1. Then

fX ,Y (x,y) =
∫ 1

max(x,y) 3dz = 3(1−max(x,y)) for 0 < x < 1 and 0 < y < 1.

fX ,Z(x,z) =
∫ z

0 3dy = 3z for 0 < x < z < 1.

fY,Z(y,z) =
∫ z

0 3dx = 3z for 0 < y < z < 1.

Using the (marginal) joint p.d.f. for fX ,Z(x,z), fX(x) =
∫ 1

x 3zdz = 3
2(1− x2) for 0 < x < 1.

Using the (marginal) joint p.d.f. for fY,Z(y,z), fY (y) =
∫ 1

y 3zdz = 3
2(1− y2) for 0 < y < 1.

Using the (marginal) joint p.d.f. for fX ,Z(x,z), fZ(z) =
∫ z

0 3zdx = 3z2 for 0 < z < 1.

Conditional p.d.f We can define the conditional p.d.f. for one set of random variables given
another set, so for 1≤ m < n,

fXm+1,...,Xn|X1,...,Xm(xm+1, ...,xn|x1, ...,xm) =
fX1,...,Xn(x1, ...,xn)
fX1,...,Xm(x1, ...,xm)

Example Consider the example above and condition on one random variable. We will consider
two out of the three cases. For each 0 < z < 1,

fX ,Y |Z(x,y, |z) =
3

3z2 =
1
z2

for 0 < x < z, 0 < y < z. So X ,Y |Z = z are independent random variables each with U(0,z)
distribution. We say that they are conditionally independent.

For each 0 < x < 1,
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fY,Z|X(y,z|x) =
3

3
2(1− x2)

=
2

(1− x2)

for 0 < y < z and x < z < 1.

Now consider conditioning on two random variables. Again we will consider two of the three
cases. For each 0 < x < z < 1,

fY |X ,Z(y|x,z) =
3
3z

=
1
z

for 0 < y < z. So the conditional distribution of Y |X = x,Z = z depends only on z and is U(0,z).

Also for each 0 < x < 1 and 0 < y < 1,

fZ|X ,Y (z|x,y) =
3

3(1−max(x,y))
=

1
(1−max(x,y))

for max(x,y) < z < 1. Hence Z|X = x,Y = y∼U(max(x,y),1).

Independence

Definition. n jointly continuous random variables X1, ...,Xn are said to be (mutually) indepen-
dent if fX1,...Xn(x1, ...,xn) = ∏n

i=1 fXi(xi) for all x1, ...,xn.

Since the p.d.f. of any subset of the Xi is obtained by integrating out the other variables it
immediately follows that

fXi1 ,...Xir
(xi1, ...,xir) =

r

∏
j=1

fXi j
(xi j)

for all x11, ...,xir for all possible subsets i1, ..., ir and all r = 2, ...,n.

Then for any events ′Xi ∈ A′i (i = 1, ...,n) it is easily seen (by integrating over the appropriate
sets) that

P(′Xi j ∈ A′i j
j = 1, ...,r) =

r

∏
j=1

P(′Xi j ∈ A′i j
)

for all possible subsets of the n events, so that the events ′Xi ∈ A′i (i = 1, ...,n) are mutually
independent.

In addition if events ′Xi ∈ A′i (i = 1, ...,n) are mutually independent for all such events, if we
take Ai = (xi−dxi,xi] for dxi > 0 small, then
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fX1,...Xn(x1, ...,xn)dx1...dxn u P(′Xi ∈ A′i i = 1, ...,n) =
n

∏
i=1

P(′Xi ∈ A′i)u
r

∏
j=1

fXi j
(xi j)dx1...dxn

It immediately follows that X1, ...,Xn are independent.

Hence independence for the X ′s is equivalent saying that all events ′Xi ∈ A′i, (i = 1, ...,n), are
mutually independent.

Properties.

1. If X1, ...,Xn are independent then the joint p.d.f. is obtained by multiplying the individual
p.d.f.’s together (for jointly continuous r.v.’s the joint p.d.f. is the ’likelihood’ in statistics).

2. You can ’spot’ independence in the same way as for two random variables. X1, ...,Xn are in-
dependent iff the ranges are independent and fX1,...Xn(x1, ...,xn) = ∏n

i=1 gi(xi) for some function
gi. When this condition holds then the marginal p.d.f’s are easily obtained. fXi(xi) = cigi(xi)
for a suitable choice of c1, ...,cn with ∏n

i=1 ci = 1.

3. If X1, ...,Xn are independent then, for any functions hi for which the expectations exist,
E [∏n

i=1 hi(Xi)] = ∏n
i=1 E[hi(Xi)]. This provides useful results for the m.g.f. (see examples).

Examples.

1. fX ,Y,Z(x,y,z) = kxy2 = kx× y2× 1 for 0 < x < 1, 0 < y < 1, 0 < z < 1. The ranges are
independent and the joint p.d.f. splits as indicated. Hence X ,Y,Z are independent and fX(x) =
c1kx for 0 < x < 1, fY (y) = c2y2 for 0 < y < 1 and fZ(z) = c2 for 0 < z < 1, where c1c2c3 = 1.
We can find the constant k,c1,c2,c3 from the results that each marginal p.d.f. integrates to 1
and c1c2c3 = 1. Hence c3 = 1, c2 = 3, kc3 = 2 and c1 = 1

3 and hence k = 6.

2. X1, ...,Xn are independent with X j ∼ Gamma(θ,α j). Then we can use property 3 to show

that Y = ∑n
j=1 X j ∼ Gamma

(
θ,∑n

j=1 α j

)
.

MY (t) = E
[
et ∑n

j=1 X j
]

= E

[
n

∏
j=1

etX j

]
=

n

∏
j=1

MX j(t) =
n

∏
j=1

(
1− t

θ

)−α j
=

(
1− t

θ

)−∑n
j=1 α j

The result that Y ∼ Gamma
(

θ,∑n
j=1 α j

)
then follows from the uniqueness of the m.g.f.

3. X1, ...,Xn are independent with X j ∼ N(µ j,σ2
j). Then we can use property 3 to show that

Y = ∑n
j=1 a jX j ∼ N

(
∑n

j=1 a jµ j,∑n
j=1 a2

jσ2
j

)
.

MY (t) = E
[
et ∑n

j=1 a jX j
]

= E

[
n

∏
j=1

eta jX j

]
=

n

∏
j=1

MX j(a jt)

=
n

∏
j=1

eµ j(a jt)+(σ2(a jt)2/2) = et ∑n
j=1 a jµ j+(t2/2)∑n

j=1 a2
jσ

2
j
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The result that Y ∼ N
(

∑n
j=1 a jµ j,∑n

j=1 a2
jσ2

j

)
then follows from the uniqueness of the m.g.f.

Transformations of variables

Let X1, ...,Xn be n jointly continuous random variables with joint p.d.f. fX1,...,Xn(x1, ...,xn) which
has support S contained in ℜn. Consider random variables Yi = gi(X1, ...,Xn) for i = 1, ...,n
which is a one to one mapping from S to D with inverses Xi = hi(Y1, ...,Yn) (for i = 1, ...,n)
which have continuous partial derivatives. Then

fY1,...,Yn(y1, ...,yn) = fX1,...,Xn(h1(y1, ...,yn), ...,hn(y1, ...,yn))×

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

∂h1(y1,...,yn)
∂y1

... ∂h1(y1,...,yn)
∂yn

... . . . ...
∂hn(y1,...,yn)

∂y1
... ∂hn(y1,...,yn)

∂yn

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

for (y1, ...,yn) ∈ D. You can find D by rewriting the constraints on the ranges of x1, ...,xn in
terms of y1, ...,yn.

Example. X1,X2,X3 are independent Exp(θ). So fX1,X2,X3(x1,x2,x3) = θ3e−θ(x1+x2+x3) for
x1 > 0, x2 > 0 and x3 > 0. Find the joint p.d.f. for Y1 = X1, Y2 = X1 +X2 and Y3 = X1 +X2 +X3.

The inverses are X1 = Y1, X2 = Y2−Y1 and X3 = Y3−Y2. Hence using the result above:

fY1,Y2,Y3(y1,y2,y3) = θ3e−θy3 ×
∣∣∣∣∣∣

∣∣∣∣∣∣

1 0 0
−1 1 0
0 −1 1

∣∣∣∣∣∣

∣∣∣∣∣∣
= θ3e−θy3

The ranges x1 > 0, x2 > 0 and x3 > 0 become y1 > 0, y2− y1 > 0 and y3−y2 > 0, i.e. 0 < y1 <
y2 < y3 < ∞.

The joint moment generating function.

The joint m.g.f. for n random variables X1, ...,Xn is now defined and its properties given. Let X
and t be n-vectors (column vectors) with jth entries X j and t j respectively. Then

MX(t) = MX1,...,Xn(t1, ..., tn) = E
[
e∑n

j=1 t jX j
]

= E[etT X]

Properties.

1. The joint m.g.f. of a subset Xi1 , ...Xir of the X ′s is obtained by setting t j = 0 for all j not
in the set {i1, ..., ir}. Note that the joint m.g.f. equals one when t j = 0 for all j = 1, ...,n (i.e.
MX(0) = 1).

2. If X1, ...,Xn are independent then
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MX(t) = E
[
e∑n

j=1 t jX j
]

= E

[
n

∏
j=1

et jX j

]
=

n

∏
j=1

MX j(t j)

3. There is a unique relationship between the joint p.d.f. and the joint m.g.f. (so one determines
the other).

4. If MX(t) = ∏n
j=1 g j(t j) for some functions g j, j = 1, ...,n, then X1, ...,Xn are independent.

Proof. If we set ti = 0 for i 6= j, then we obtain the m.g.f. for X j, hence MX j(t j)= g j(t j)∏i6= j gi(0).

Also setting ti = 0 for i = 1, ...,n gives 1 = ∏n
i=1 gi(0). Therefore MX j(t j) = g j(t j)

g j(0) and hence

MX(t) =
n

∏
j=1

g j(t j) =
n

∏
j=1

g j(0)MX j(t j) =
n

∏
j=1

MX j(t j)

Hence from property 3 of the joint m.g.f., X1, ...,Xn are independent with the p.d.f. of X j deter-
mined by the m.g.f. MX j(t j) = g j(t j)

g j(0) .

Use of the joint m.g.f. to obtain some important results in statistics.

1. If X1, ...,Xn are independent N(µ,σ2) and if Z j = X j−µ
σ for j = 1, ...,n, then Z1, ...,Zn are

independent N(0,1).

Proof.

MZ(t) = E
[
e∑n

j=1 t j(X j−µ)/σ
]

=
n

∏
j=1

E[et j(X j−µ)/σ] =
n

∏
j=1

(
e−µt j/σMX j(t j/σ)

)

=
n

∏
j=1

(
e−µt j/σeµ(t j/σ)+(σ2/2)(t jσ)2

)
=

n

∏
j=1

et2
j /2

Hence by property 4 of the joint m.g.f., Z1, ...,Zn are independent with MZ j(t j) = et2
j /2, which

is the m.g.f. of the N(0,1) distribution. Hence from the uniqueness property of the m.g.f.,
Z1, ...,Zn are independent N(0,1).

2. If Z1, ...,Zn are independent N(0,1) and Y = AZ with Z the n-vector with jth entry Z j and A
an n×n orthogonal matrix (i.e. AT A = AAT = I where I is the n×n identity matrix), then Y
is an n-vector (entries Y1, ...,Yn) of independent N(0,1) random variables.

Proof. Now MZ(t) = ∏n
j=1 MZ j(t j) = ∏n

j=1 et2
j /2 = e(1/2)tT t. Hence

MY(t) = E[etT Y] = E
[
etT AZ

]
= E

[
e(AT t)T Z

]
= MZ(AT t)

= e(1/2)(AT t)T (AT t) = e(1/2)tT AAT t = e(1/2)tT t =
n

∏
j=1

et2
j /2
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Hence using property 4 of the joint m.g.f. and the uniqueness of the m.g.f., Y1, ...,Yn are inde-
pendent N(0,1).

3. If Y1, ...,Yn are independent N(0,1) then Y1 and U = ∑n
j=2Y 2

j are independent with Y1 ∼
N(0,1) and U ∼ χ2

(n−1).

Proof. We use the result proved earlier that if Y ∼ N(0,1) then E[etY 2
] = (1−2t)−1/2. Now

MY1,U(s, t) = E
[
esY1+t ∑n

j=2 Y 2
j

]
= E

[
esY1

n

∏
j=2

etY 2
j

]
= E[esY1 ]

n

∏
j=2

E[etY 2
j ]

= MY1(s)
n

∏
j=2

E[etY 2
j ] = es2/2

n

∏
j=2

(1−2t)−1/2 = es2/2(1−2t)−(n−1)/2

Hence using property 4 of the joint m.g.f and the uniqueness of the m.g.f., Y1 ∼ N(0,1) inde-
pendent of U ∼ χ2

(n−1).

Theorem. If X1, ...,Xn are independent N(µ,σ2) then
√

n(X − µ)/σ ∼ N(0,1) independent of
∑n

j=1(X j−X)2/σ2 ∼ χ2
(n−1).

Proof. Let Z j = (X j− µ)/σ for j = 1, ...,n. Then
√

nZ =
√

n(X − µ)/σ and ∑n
j=1(Z j−Z)2 =

∑n
j=1(X j−X)2/σ2. Also from result (1) Z1, ...,Zn are independent N(0,1).

Use result (2) with A the n×n matrix with first row
(

1√
n , 1√

n , ..., 1√
n

)
. Then Y1 =

(
1√
n , 1√

n , ..., 1√
n

)
Z =

√
nZ. Also

n

∑
j=1

Y 2
j = YT Y = (AZ)T (AZ) = ZT AT AZ = ZT Z =

n

∑
j=1

Z2
j

Therefore

n

∑
j=1

(Z j−Z)2 =
n

∑
j=1

Z2
j −nZ2 =

n

∑
j=1

Y 2
j −Y 2

1 =
n

∑
j=2

Y 2
j

Then from result (2) Y1, ...,Yn are independent N(0,1) and from result (3) Y1 =
√

nZ =
√

n(X−
µ)/σ∼ N(0,1) independent of U = ∑n

j=2Y 2
j = ∑n

j=1(Z j−Z)2 = ∑n
j=1(X j−X)2/σ2 ∼ χ2

(n−1).

Note: This provides the basis for the t and χ2 tests met in Fundamentals of Statistics 1. Or-
thogonal transformations of independent N(0,1) variables will also be used to prove results in
Statistical Modelling 1.
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