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The Law of Large Numbers (LLN)

The LLN is one of the most important results of the classical probability theory. We shall
discuss here the so called weak form of this Law.

Theorem 1. Let X1,X2, ... be a sequence of i.i.d. random variables each with finite mean
E(X j) = a and finite variance Var(X j) = σ2. Then for any ε > 0

P(|1
n

n

∑
j=1

X j−a| ≥ ε)→ 0 as n→ ∞.

The proof of this theorem will be given later. In order to carry it out we need the following
lemmas.

Lemma 1 (Markov’s Inequality). If ξ is a random variable s. t. ξ≥ 0 and E(ξ) < ∞ then for
any δ > 0 the following inequality holds:

P(ξ≥ δ)≤ E(ξ)
δ

(1)

Proof. Define a r.v. η by setting

η =

{
1 if ξ≥ δ

0 if ξ < δ

Note that ξ≥ δη. To see this, consider two cases: ξ≥ δ and ξ < δ. In the first case the inequality
holds because ξ≥ δ≡ δη. In the second case the inequality holds because ξ≥ 0≡ δη.
But then also E(ξ) ≥ E(δη) = δE(η). Note that E(η) = P(η = 1) = P(ξ ≥ δ) and hence
E(ξ)≥ δP(ξ≥ δ) which is equivalent to the statement of the Lemma. 2

Exercise Prove that For any h > 0, P(|X | ≥ h)≤ E[|X |]
h . Hint: apply (1) to ξ = |X |.

Lemma 2: Chebyshev’s Inequality. If E(ξ) = µ and Var(ξ) = σ2, which are finite, then for
any ε > 0

P(|ξ−µ| ≥ ε)≤ Var(ξ)
ε2 . (2)

Proof. Obviously, P(|ξ−µ| ≥ ε) = P((ξ−µ)2 ≥ ε2). Since (ξ−µ)2 ≥ 0, we can apply (1) with
ξ replaced by (ξ−µ)2 and δ = ε2. Hence P(|ξ−µ| ≥ ε)≤ E(ξ−µ)2

ε2 = Var(ξ)
ε2 . 2

Lemma 3. If X1,X2, ...,Xn is a sequence of r.v.’s with Cov(X j,Xi) = 0 for all j 6= i, then

Var(
n

∑
j=1

X j) =
n

∑
j=1

Var(X j). (3)

Proof. By the definition of variance, Var(∑n
j=1 X j) = E[∑n

j=1 X j−E(∑n
j=1 X j)]2 =

E[∑n
j=1(X j−E(X j))]2 = ∑

n
j=1(X j−E(X j))2 +2∑1≤ j<i≤n E[(X j−E(X j))(Xi−E(Xi))] =

∑
n
j=1Var(X j)+2∑1≤ j<i≤nCov(X j,Xi) = ∑

n
j=1Var(X j). 2
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Proof of the LLN (Theorem 1). Set ξ = 1
n ∑

n
j=1 X j and note that E[ξ] = 1

n ∑
n
j=1 E(X j) = 1

nna =
a. Hence, by Chebyshev’s inequality (2),

P(|1
n

n

∑
j=1

X j−a| ≥ ε) = P(|ξ−a| ≥ ε)≤
Var(1

n ∑
n
j=1 X j)

ε2

Using the properties of the variance and (3) we obtain

P(|1
n

n

∑
j=1

X j−a| ≥ ε)≤
Var(∑n

j=1 X j)
n2ε2 =

∑
n
j=1Var(X j)

n2ε2 =
nσ2

n2ε2 =
σ2

nε2 → 0 as n→ ∞. 2

Note. The following definition is useful: we say that a sequence Sn of r.v.’s converges in proba-
bility to a if limn→∞ P(|Sn−a| ≥ ε) = 0 for any ε > 0. Theorem 1 thus states that the sequence
1
n ∑

n
j=1 X j converges in probability to a as n tends to infinity.

Bernoulli’s Law of Large Numbers.

Theorem 2. Consider a series of n independent Bernoulli trials and let p be the probability of
‘success’ in each trial. Denote by νn the total number of ‘success’ in n trials. Then νn

n converges
in probability to p as n tends to infinity:

lim
n→∞

P(|νn

n
− p| ≥ ε) = 0 for any ε > 0.

Proof. Let ξ j be the number of successes in the jth trial. Obviously ξ j are independent r.v.’s
such that P(ξ j = 1) = p and P(ξ j = 0) = 1− p ≡ q and νn = ∑

n
j=1 ξ j. Obviously E(ξ j) = p,

Var(ξ j) = pq and, by Theorem 1, νn
n ≡

1
n ∑

n
j=1 ξ j converges in probability to p as n→ ∞. 2

In fact the proof of Theorem 1 is based on an estimate which is of its own importance , namely
for any ε > 0

P(|νn

n
− p| ≥ ε)≤ pq

nε2 .

Some examples using the inequalities.

1. If X is a non-negative random variable with E(X) = µ > 0, then it follows from Markov’s
inequality with δ = Nµ that P(X > Nµ)≤ µ

Nµ = 1
N for any N > 0.

2. If σ2 = 0 then from Chebyshev’s inequality for any h > 0, P(|X−µ|< h) = 1−P(|X−µ| ≥
h) ≥ 1− σ2

h2 = 1. Hence P(X = µ) = limh↓0 P(|X − µ| < h) = 1. So variance zero implies the
random variable takes a single value with probability 1.

3. When σ2 > 0 Chebyshev’s inequality gives a lower bound on the probability that X lies
within k standard deviations from the mean. Take ε = kσ. Then

P(|X−µ|< kσ) = 1−P(|X−µ| ≥ kσ)≥ 1− σ2

(kσ)2 = 1− 1
k2

4. When σ = 1, how large a sample is needed if we want to be at least 95% certain that the
sample mean lies within 0.5 of the true mean? We shall use Chebyshev’s inequality to estimate
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this number. Remember that the sample mean is defined as Xn = 1
n ∑

n
j=1 X j. By (2) with ε = 0.5

we have

P(|Xn−a|< 0.5) = 1− (|Xn−µ| ≥ 0.5)≥ 1− σ2

n(0.5)2 = 1− 4
n
≥ 0.95

provided n≥ 4
0.05 = 80. So a sample of size 80 would be sufficient for the purpose.

A remark on application to statistics.

Consider a sequence of i.i.d. random variables X1,X2, ... and let Yn = g(X1, ...,Xn) be an estima-
tor of a parameter θ of the common distribution of the X ′s. If Yn is an unbiased estimator of θ

then E[Yn] = θ. Let σ2
n = Var(Yn). Then for any ε > 0, using Chebyshev’s inequality for Yn, we

obtain P(|Yn−θ| ≥ ε)≤ σ2
n

ε
. This suggests that when comparing unbiased estimators we should

choose the one with smallest variance. We would also like our estimator to be as accurate as
we please provided we take a large enough sample. If limn→∞ σ2

n = 0 we can ensure this, since
limn→∞ P(|Yn−θ| ≥ ε) = 0 for any ε > 0, i.e. Yn converges in probability to θ (and Yn is said to
be a consistent estimator of θ).

The Central Limit Theorem (CLT).

Let X1,X2, ... be a sequence of i.i.d. random variables each with finite mean µ and finite vari-
ance σ2 and let Xn = 1

n ∑
n
j=1 X j be the sample mean based on X1, ...,Xn. Then we can find an

approximation for P(Xn ≤ A) when n is large by writing the event for Xn in terms of the stan-
dardized variable Zn =

√
n(Xn− µ)/σ (i.e. P(Xn ≤ A) = P

(
Zn ≤

√
n(A−µ)

σ

)
) and proving that

limn→∞ P(Zn ≤ z) = Φ(z) =
∫ z
−∞

1√
2π

e−x2/2dx which is the c.d.f. of N(0,1). The proof of this
result uses the m.g.f. and the following lemma.

Lemma. Let Z1,Z2, ... be a sequence of random variables. If limn→∞ MZn(t) = M(t), which
is the m.g.f. of a distribution with c.d.f. F, then limn→∞ FZn(z) = F(z) at all points z for which
F(z) is continuous.

Theorem (The Central Limit Theorem). Let X1,X2, ... be a sequence of i.i.d. random vari-
ables with finite mean E(X j) = µ and finite variance Var(X j) = σ2. Moreover, suppose that X j
have a m.g.f. which exists in an open region about zero. Let

Zn =
√

n(Xn−µ)/σ≡
∑

n
j=1 X j−nµ
√

nσ

then
lim
n→∞

P(Zn ≤ z) = Φ(z).

Proof. Let U j = (X j−µ)/σ and let MU(t) be the common m.g.f. Then MU(t) = e−µt/σMX(t/σ)
exists in an open interval about t = 0, M(0) = 1, M′(0) = E[U ] = 0 and M′′(0) = E[U2] =
Var(U) = 1. So U1,U2, ... are i.i.d. with mean zero and variance one. Now

MZn(t) = E
[
et ∑

n
j=1 U j/

√
n
]

=
n

∏
j=1

E[etU j/
√

n] =
(
MU(t/

√
n)
)n
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Taking logs to base e gives ln(MZn(t))= n(ln(MU(t/
√

n))). Now let x = 1/
√

n and use L’Hopital’s
rule. Then

lim
n→∞

n ln(MU(t/
√

n)) = lim
x↓0

ln(MU(xt))
x2

= lim
x↓0

tM
′
U(xt)/MU(xt)

2x
= lim

x↓0

t2(M
′′
U(xt)MU(xt)− (M

′
U(xt))2)/(MU(xt))2

2

=
t2(M

′′
U(0)MU(0)− (M

′
U(0))2)

2(MU(0))2 =
t2

2

Hence limt→∞ ln(MZn(t)) = t2/2 and so limt→∞ MZn(t) = et2/2. Since this is the m.g.f. of the
N(0,1) distribution, using the lemma proves that limn→∞ P(Zn ≤ z) = Φ(z) =

∫ z
−∞

1√
2π

e−x2/2dx.
2
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