Probability 2 - Notes 10

Transformations of variables

Let X and Y be jointly continuous random variables with joint p.d.f. fx y(x,y) which has
support S contained in R2. Consider random variables U = g(X,Y) and V = h(X,Y) which
is a one to one mapping from S to D with inverses X = a(U,V) and Y = b(U,V) which have
continuous partial derivatives. Then

da(u,y)  da(u,y)
fuoy(u,v) = fxy(a(u,v),b(u,v)) x |det ( bl bl ) |

for (u,v) € D. You can find D by rewriting the constraints on the ranges of x and y in terms of
uand v.

Example. X ~ Exp(0) independent of Y ~ Exp(6). Find the joint p.d.f. for U =X +Y and
V=Y.

The inverses are X =U —V and Y = V. Also fxy(x,y) = 8% =% for x > 0 and y > 0. Hence
using the result above:
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The ranges x > 0 and y > 0 become u —v>0andv > 0,1e. 0 <v <u < oo,

Student’s t distribution Let X ~ N(0,1) independent of ¥ ~ 2. Find the joint p.d.f. for
T = —X_ and V =Y and hence find the marginal p.d.f. for 7.
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The inverses are X = T+/V/nandY =V. Also
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for all x and for y > 0. Hence using the result above:
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The range y > 0 become v > 0, hence —co <t < oo and 0 < v < oo,

We find the p.d.f. for T by integrating out over V and using the result that a Gamma p.d.f.
integrates to one.
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for —oo <t < 0. Note that I'(1/2) = /& and the Beta function B(a, ) = l}(zgig) so the p.d.f.
of T is usually written as

1
fr(t) =
2\ (n+1)/2
Vi (3,3) (1+4)
isher’s istribution Let X ~ % independent of ¥ ~ 9. Find the joint p.d.f. for U = 54—
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and V =Y and hence find the marginal p.d.f. for U.

The inverses are X = (n/m)UV and Y = V. Also
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for x > 0 and y > 0. Hence using the result above:
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The ranges x > 0 and y > 0 become uv > 0 and v > 0 and hence # > 0 and v > 0. Then
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Conditional Distributions.

For each x for which fx(x) > 0, we define the conditional p.d.f. for Y |X = x by

fY\X(Y|x) = 2L
X

This is easily seen to be a p.d.f. for Y for each fixed value of x. In particular, we can compute
E[g(Y)|X =x]] = [7.&(y) fyjx(V]x)dy. This is a function of x and once it is known we define
E|[g(Y)|X]] by replacing x in E[g(Y)|X = x]] by X. Thus, as in the discrete case, E[g(Y)|X]] is
a random variable; moreover it is a function of X. The following results analogous to the ones
discussed in the discrete case hold:

L fr(v) = JZu frix () fx (x)dx
2. E[g(Y)|=E|[E[g(Y)|X]] and hence E[Y] = E[E[Y |X]] and Var(Y) = E[Var(Y |X)|+Var(E[Y|X]).
3. My(t) = E[e"Y] = E[E[¢"Y |X]).

4. For both the discrete and continuous case a similar result to (2) holds for the expectation of
a function of both X and Y, namely E[g(X,Y)] = E[E[g(X,Y)|X]].

There are existence requirements for the expectations, which we assume hold. A brief proof is
given for (4) when X and Y are jointly continuous random variables.

Let A denote the set of real values x for which fx(x) > 0. Forx € A,

[

E[gX,Y)|X =x] = / gl y) fxy (xly)dy = fx;(x) / Zg(x,y)fx,y(x,y)dy

Then E[g(X,Y)|X] is the function of X which takes value E[g(X,Y)|X = x] when X = x for all
x € A. Therefore

EE(.X] = [ Fley)X =afx(x)ds
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Examples.

L. fxy(x,y) =2forx>0,y>0and x+y < 1. Then fx(x) =2(1 —x) for 0 < x < 1 and hence
Jrix(vlx) = = for0<y<1—x Hence Y|X =x~U(0,1—x).

2.Y|X =x~ N(a+bx,6%) and X ~ N(u,t?). We will first find E[Y] and Var(Y).

E[Y|X] = a+bX and Var(Y|X) = . therefore E[Y] = E[E[Y|X]] = E[a+ bX] = a+ bu and

Var(Y) = E[Var(Y |X)]+ Var(E[Y|X]) = E[6%] 4+ Var(a+ bX) = 6> + b*1?

We will now find the m.g.f. for ¥ and hence obtain the distribution of Y. Now E[e'|X] is

just the m.g.f. of ¥ over the conditional distribution of Y|X, so E[e'Y [X] = e(a+bX)i+0*(%/2),
Therefore

My(t) _ E[E[etY|X]] - E e(a+bX)t+02(t2/2)] :eat+02(t2/2)MX(bt)

Qi+ 02 (2/2) u(br) (012 /2) _ (atbp)i+(02+b22)(122)

Hence Y ~ N(a+ bu,6? + b*1?).
Joint Moment Generating Functions.
My y(s,t) = E[e* Y], The properties are given below:

1. A uniqueness property holds as for the m.g.f. for a single random variable X. So if we
recognise that the joint m.g.f. comes from a specific joint p.d.f., then X, Y have that joint p.d.f.

2. Mxy(0,0) = 1; Mx(s) = Mx y(s,0), My(t) = Mx y(0,z). If you know My y(s,t), you can
then find the distribution, mean and variance for each of X and Y.

azMxﬁy (s,0)

3. =55 evaluated at s =t = 0 gives E[XY].

4. 1f X and Y are independent then My y (s,1) = E[eXe'Y] = E[e*X]E[e'Y] = Mx (s)My ().
5. If My y(s,t) = g(s)h(t) then, from property 1, Mx(s) = h(0)g(s), My(t) = g(0)h(t) and

1 = g(0)Ah(0). Hence Mx y(s,t) = Mx(t)My(t) and by result 4 and result 1, concerning the
uniqueness of the joint m.g.f., X and Y are independent.



