Probability 2 - Notes 10

Transformations of variables

Let X and Y be jointly continuous random variables with joint p.d.f. $f_{X, Y}(x, y)$ which has support S contained in \mathfrak{R}^{2}. Consider random variables $U=g(X, Y)$ and $V=h(X, Y)$ which is a one to one mapping from S to D with inverses $X=a(U, V)$ and $Y=b(U, V)$ which have continuous partial derivatives. Then

$$
f_{U, V}(u, v)=f_{X, Y}(a(u, v), b(u, v)) \times\left|\operatorname{det}\left(\begin{array}{ll}
\frac{\partial a(u, v)}{\partial u} & \frac{\partial a(u, v)}{\partial v} \\
\frac{\partial b(u, v)}{\partial u} & \frac{\partial b(u, v)}{\partial v}
\end{array}\right)\right|
$$

for $(u, v) \in D$. You can find D by rewriting the constraints on the ranges of x and y in terms of u and v.

Example. $X \sim \operatorname{Exp}(\theta)$ independent of $Y \sim \operatorname{Exp}(\theta)$. Find the joint p.d.f. for $U=X+Y$ and $V=Y$.

The inverses are $X=U-V$ and $Y=V$. Also $f_{X, Y}(x, y)=\theta^{2} e^{-\theta(x+y)}$ for $x>0$ and $y>0$. Hence using the result above:

$$
f_{U, V}(u, v)=\theta^{2} e^{-\theta u} \times\left\|\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right\|=\theta^{2} e^{-\theta u}
$$

The ranges $x>0$ and $y>0$ become $u-v>0$ and $v>0$, i.e. $0<v<u<\infty$.
Student's \mathbf{t} distribution Let $X \sim N(0,1)$ independent of $Y \sim \chi_{n}^{2}$. Find the joint p.d.f. for $T=\frac{X}{\sqrt{Y / n}}$ and $V=Y$ and hence find the marginal p.d.f. for T.

The inverses are $X=T \sqrt{V / n}$ and $Y=V$. Also

$$
f_{X, Y}(x, y)=\left(\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}\right)\left(\frac{y^{(n / 2)-1} e^{-y / 2}}{2^{(n / 2)} \Gamma(n / 2)}\right)
$$

for all x and for $y>0$. Hence using the result above:

$$
f_{T, V}(t, v)=\frac{v^{(n / 2)-1} e^{\left.-v\left(1+\left(t^{2} / n\right)\right) / 2\right)}}{\sqrt{\pi} 2^{(n+1) / 2} \Gamma(n / 2)} \times\left\|\begin{array}{ll}
\begin{array}{l}
\frac{\sqrt{v}}{\sqrt{n}} \\
\frac{t}{2 \sqrt{n v}} \\
0
\end{array} 1
\end{array}\right\|=\frac{v^{((n+1) / 2)-1} e^{\left.-v\left(1+\left(t^{2} / n\right)\right) / 2\right)}}{\sqrt{n} \sqrt{\pi} 2^{(n+1) / 2} \Gamma(n / 2)}
$$

The range $y>0$ become $v>0$, hence $-\infty<t<\infty$ and $0<v<\infty$.
We find the p.d.f. for T by integrating out over V and using the result that a Gamma p.d.f. integrates to one.

$$
\begin{aligned}
f_{T}(t) & =\frac{\Gamma((n+1) / 2)}{\sqrt{n} \sqrt{\pi} \Gamma(n / 2)\left(1+\left(t^{2} / n\right)\right)^{(n+1) / 2}} \int_{0}^{\infty} \frac{\left(\left(1+\left(t^{2} / n\right)\right) / 2\right)^{(n+1) / 2} v^{((n+1) / 2)-1} e^{\left.-v\left(1+\left(t^{2} / n\right)\right) / 2\right)}}{\Gamma((n+1) / 2)} d v \\
& =\frac{\Gamma\left(\frac{(n+1)}{2}\right)}{\sqrt{n} \sqrt{\pi} \Gamma\left(\frac{n}{2}\right)\left(1+\frac{t^{2}}{n}\right)^{(n+1) / 2}}
\end{aligned}
$$

for $-\infty<t<\infty$. Note that $\Gamma(1 / 2)=\sqrt{\pi}$ and the Beta function $B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$ so the p.d.f. of T is usually written as

$$
f_{T}(t)=\frac{1}{\sqrt{n} B\left(\frac{1}{2}, \frac{n}{2}\right)\left(1+\frac{t^{2}}{n}\right)^{(n+1) / 2}}
$$

Fisher's F Distribution Let $X \sim \chi_{n}^{2}$ independent of $Y \sim \chi_{m}^{2}$. Find the joint p.d.f. for $U=\frac{X / n}{Y / m}$ and $V=Y$ and hence find the marginal p.d.f. for U.

The inverses are $X=(n / m) U V$ and $Y=V$. Also

$$
f_{X, Y}(x, y)=\frac{x^{(n / 2)-1} y^{(m / 2)-1} e^{-(x+y) / 2}}{2^{(n+m) / 2} \Gamma(n / 2) \Gamma(m / 2)}
$$

for $x>0$ and $y>0$. Hence using the result above:

$$
\begin{aligned}
f_{U, V}(u, v) & =\frac{(n / m)^{(n / 2)-1} u^{(n / 2)-1} v^{((n+m) / 2)-2} e^{-v(1+(n u / m)) / 2}}{2^{(n+m) / 2} \Gamma(n / 2) \Gamma(m / 2)} \times\left\|\begin{array}{ll}
(n / m) v & (n / m) u \\
0 & 1
\end{array}\right\| \\
& =\frac{(n / m)^{n / 2} u^{(n / 2)-1} v^{((n+m) / 2)-1} e^{-v(1+(n u / m)) / 2}}{2^{(n+m) / 2} \Gamma(n / 2) \Gamma(m / 2)}
\end{aligned}
$$

The ranges $x>0$ and $y>0$ become $u v>0$ and $v>0$ and hence $u>0$ and $v>0$. Then

$$
\begin{aligned}
f_{U}(u) & =\frac{(n / m)^{n / 2} u^{(n / 2)-1} \Gamma((n+m) / 2)}{\Gamma(n / 2) \Gamma(m / 2)(1+(n u / m))^{(n+m) / 2}} \int_{0}^{\infty} \frac{(1+(n u / m))^{(n+m) / 2} v^{((n+m) / 2)-1} e^{-v(1+(n u / m)) / 2}}{2^{(n+m) / 2} \Gamma((n+m) / 2)} d v \\
& =\frac{(n / m)^{n / 2} u^{(n / 2)-1}}{B((n / 2),(m / 2))(1+(n u / m))^{(n+m) / 2}}
\end{aligned}
$$

Conditional Distributions.

For each x for which $f_{X}(x)>0$, we define the conditional p.d.f. for $Y \mid X=x$ by

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)} .
$$

This is easily seen to be a p.d.f. for Y for each fixed value of x. In particular, we can compute $E[g(Y) \mid X=x]]=\int_{-\infty}^{\infty} g(y) f_{Y \mid X}(y \mid x) d y$. This is a function of x and once it is known we define $E[g(Y) \mid X]]$ by replacing x in $E[g(Y) \mid X=x]]$ by X. Thus, as in the discrete case, $E[g(Y) \mid X]]$ is a random variable; moreover it is a function of X. The following results analogous to the ones discussed in the discrete case hold:

1. $f_{Y}(y)=\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid x) f_{X}(x) d x$
2. $E[g(Y)]=E[E[g(Y) \mid X]]$ and hence $E[Y]=E[E[Y \mid X]]$ and $\operatorname{Var}(Y)=E[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(E[Y \mid X])$.
3. $M_{Y}(t)=E\left[e^{t Y}\right]=E\left[E\left[e^{t Y} \mid X\right]\right]$.
4. For both the discrete and continuous case a similar result to (2) holds for the expectation of a function of both X and Y, namely $E[g(X, Y)]=E[E[g(X, Y) \mid X]]$.

There are existence requirements for the expectations, which we assume hold. A brief proof is given for (4) when X and Y are jointly continuous random variables.

Let A denote the set of real values x for which $f_{X}(x)>0$. For $x \in A$,

$$
E[g(X, Y) \mid X=x]=\int_{-\infty}^{\infty} g(x, y) f_{X \mid Y}(x \mid y) d y=\frac{1}{f_{X}(x)} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d y
$$

Then $E[g(X, Y) \mid X]$ is the function of X which takes value $E[g(X, Y) \mid X=x]$ when $X=x$ for all $x \in A$. Therefore

$$
\begin{aligned}
E[E[g(X, Y) \mid X]] & =\int_{x \in A} E[g(X, Y) \mid X=x] f_{X}(x) d x \\
& =\int_{x \in A} f_{X}(x)\left(\frac{1}{f_{X}(x)} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d y\right) d x \\
& =\int_{x \in A} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d y d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X, Y}(x, y) d y d x \\
& =E[g(X, Y)]
\end{aligned}
$$

Examples.

1. $f_{X, Y}(x, y)=2$ for $x>0, y>0$ and $x+y<1$. Then $f_{X}(x)=2(1-x)$ for $0<x<1$ and hence $f_{Y \mid X}(y \mid x)=\frac{1}{1-x}$ for $0<y<1-x$. Hence $Y \mid X=x \sim U(0,1-x)$.
2. $Y \mid X=x \sim N\left(a+b x, \sigma^{2}\right)$ and $X \sim N\left(\mu, \tau^{2}\right)$. We will first find $E[Y]$ and $\operatorname{Var}(Y)$.
$E[Y \mid X]=a+b X$ and $\operatorname{Var}(Y \mid X)=\sigma^{2}$. therefore $E[Y]=E[E[Y \mid X]]=E[a+b X]=a+b \mu$ and

$$
\operatorname{Var}(Y)=E[\operatorname{Var}(Y \mid X)]+\operatorname{Var}(E[Y \mid X])=E\left[\sigma^{2}\right]+\operatorname{Var}(a+b X)=\sigma^{2}+b^{2} \tau^{2}
$$

We will now find the m.g.f. for Y and hence obtain the distribution of Y. Now $E\left[e^{t Y} \mid X\right]$ is just the m.g.f. of Y over the conditional distribution of $Y \mid X$, so $E\left[e^{t Y} \mid X\right]=e^{(a+b X) t+\sigma^{2}\left(t^{2} / 2\right)}$. Therefore

$$
\begin{aligned}
M_{Y}(t) & =E\left[E\left[e^{t Y} \mid X\right]\right]=E\left[e^{(a+b X) t+\sigma^{2}\left(t^{2} / 2\right)}\right]=e^{a t+\sigma^{2}\left(t^{2} / 2\right)} M_{X}(b t) \\
& =e^{a t+\sigma^{2}\left(t^{2} / 2\right)} e^{\mu(b t)+\tau^{2}\left((b t)^{2} / 2\right)}=e^{(a+b u) t+\left(\sigma^{2}+b^{2} \tau^{2}\right)\left(t^{2} / 2\right)}
\end{aligned}
$$

Hence $Y \sim N\left(a+b \mu, \sigma^{2}+b^{2} \tau^{2}\right)$.

Joint Moment Generating Functions.

$M_{X, Y}(s, t)=E\left[e^{s X+t Y}\right]$. The properties are given below:

1. A uniqueness property holds as for the m.g.f. for a single random variable X. So if we recognise that the joint m.g.f. comes from a specific joint p.d.f., then X, Y have that joint p.d.f.
2. $M_{X, Y}(0,0)=1 ; M_{X}(s)=M_{X, Y}(s, 0), M_{Y}(t)=M_{X, Y}(0, t)$. If you know $M_{X, Y}(s, t)$, you can then find the distribution, mean and variance for each of X and Y.
3. $\frac{\partial^{2} M_{X, Y}(s, t)}{\partial s \partial t}$ evaluated at $s=t=0$ gives $E[X Y]$.
4. If X and Y are independent then $M_{X, Y}(s, t)=E\left[e^{s X} e^{t Y}\right]=E\left[e^{s X}\right] E\left[e^{t Y}\right]=M_{X}(s) M_{Y}(t)$.
5. If $M_{X, Y}(s, t)=g(s) h(t)$ then, from property $1, M_{X}(s)=h(0) g(s), M_{Y}(t)=g(0) h(t)$ and $1=g(0) h(0)$. Hence $M_{X, Y}(s, t)=M_{X}(t) M_{Y}(t)$ and by result 4 and result 1 , concerning the uniqueness of the joint m.g.f., X and Y are independent.
