
Probability 2 - Notes 10

Transformations of variables

Let X and Y be jointly continuous random variables with joint p.d.f. fX ,Y (x,y) which has
support S contained in ℜ2. Consider random variables U = g(X ,Y ) and V = h(X ,Y ) which
is a one to one mapping from S to D with inverses X = a(U,V ) and Y = b(U,V ) which have
continuous partial derivatives. Then

fU,V (u,v) = fX ,Y (a(u,v),b(u,v))×|det

(
∂a(u,v)

∂u
∂a(u,v)

∂v
∂b(u,v)

∂u
∂b(u,v)

∂v

)
|

for (u,v) ∈ D. You can find D by rewriting the constraints on the ranges of x and y in terms of
u and v.

Example. X ∼ Exp(θ) independent of Y ∼ Exp(θ). Find the joint p.d.f. for U = X +Y and
V = Y .

The inverses are X =U−V and Y =V . Also fX ,Y (x,y) = θ2e−θ(x+y) for x > 0 and y > 0. Hence
using the result above:

fU,V (u,v) = θ2e−θu×
∣∣∣∣
∣∣∣∣

1 −1
0 1

∣∣∣∣
∣∣∣∣ = θ2e−θu

The ranges x > 0 and y > 0 become u− v > 0 and v > 0, i.e. 0 < v < u < ∞.

Student’s t distribution Let X ∼ N(0,1) independent of Y ∼ χ2
n. Find the joint p.d.f. for

T = X√
Y/n

and V = Y and hence find the marginal p.d.f. for T .

The inverses are X = T
√

V/n and Y = V . Also

fX ,Y (x,y) =
(

1√
2π

e−x2/2
)(

y(n/2)−1e−y/2

2(n/2)Γ(n/2)

)

for all x and for y > 0. Hence using the result above:

fT,V (t,v) =
v(n/2)−1e−v(1+(t2/n))/2)
√

π2(n+1)/2Γ(n/2)
×

∣∣∣∣∣

∣∣∣∣∣

√
v√
n

t
2
√

nv
0 1

∣∣∣∣∣

∣∣∣∣∣ =
v((n+1)/2)−1e−v(1+(t2/n))/2)
√

n
√

π2(n+1)/2Γ(n/2)

The range y > 0 become v > 0, hence −∞ < t < ∞ and 0 < v < ∞.

We find the p.d.f. for T by integrating out over V and using the result that a Gamma p.d.f.
integrates to one.

1



fT (t) =
Γ((n+1)/2)

√
n
√

πΓ(n/2)(1+(t2/n))(n+1)/2

∞∫

0

(
(1+(t2/n))/2

)(n+1)/2 v((n+1)/2)−1e−v(1+(t2/n))/2)

Γ((n+1)/2)
dv

=
Γ

(
(n+1)

2

)

√
n
√

πΓ
(n

2

)(
1+ t2

n

)(n+1)/2

for −∞ < t < ∞. Note that Γ(1/2) =
√

π and the Beta function B(α,β) = Γ(α)Γ(β)
Γ(α+β) so the p.d.f.

of T is usually written as

fT (t) =
1

√
nB

(1
2 , n

2

)(
1+ t2

n

)(n+1)/2

Fisher’s F Distribution Let X ∼ χ2
n independent of Y ∼ χ2

m. Find the joint p.d.f. for U = X/n
Y/m

and V = Y and hence find the marginal p.d.f. for U .

The inverses are X = (n/m)UV and Y = V . Also

fX ,Y (x,y) =
x(n/2)−1y(m/2)−1e−(x+y)/2

2(n+m)/2Γ(n/2)Γ(m/2)

for x > 0 and y > 0. Hence using the result above:

fU,V (u,v) =
(n/m)(n/2)−1u(n/2)−1v((n+m)/2)−2e−v(1+(nu/m))/2

2(n+m)/2Γ(n/2)Γ(m/2)
×

∣∣∣∣
∣∣∣∣

(n/m)v (n/m)u
0 1

∣∣∣∣
∣∣∣∣

=
(n/m)n/2u(n/2)−1v((n+m)/2)−1e−v(1+(nu/m))/2

2(n+m)/2Γ(n/2)Γ(m/2)

The ranges x > 0 and y > 0 become uv > 0 and v > 0 and hence u > 0 and v > 0. Then

fU(u) =
(n/m)n/2u(n/2)−1Γ((n+m)/2)

Γ(n/2)Γ(m/2)(1+(nu/m))(n+m)/2

∫ ∞

0

(1+(nu/m))(n+m)/2 v((n+m)/2)−1e−v(1+(nu/m))/2

2(n+m)/2Γ((n+m)/2)
dv

=
(n/m)n/2u(n/2)−1

B((n/2),(m/2))(1+(nu/m))(n+m)/2
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Conditional Distributions.

For each x for which fX(x) > 0, we define the conditional p.d.f. for Y |X = x by

fY |X(y|x) =
fX ,Y (x,y)

fX(x)
.

This is easily seen to be a p.d.f. for Y for each fixed value of x. In particular, we can compute
E[g(Y )|X = x]] =

∫ ∞
−∞ g(y) fY |X(y|x)dy. This is a function of x and once it is known we define

E[g(Y )|X ]] by replacing x in E[g(Y )|X = x]] by X . Thus, as in the discrete case, E[g(Y )|X ]] is
a random variable; moreover it is a function of X . The following results analogous to the ones
discussed in the discrete case hold:

1. fY (y) =
∫ ∞
−∞ fY |X(y|x) fX(x)dx

2. E[g(Y )]= E[E[g(Y )|X ]] and hence E[Y ] = E[E[Y |X ]] and Var(Y )= E[Var(Y |X)]+Var(E[Y |X ]).

3. MY (t) = E[etY ] = E[E[etY |X ]].

4. For both the discrete and continuous case a similar result to (2) holds for the expectation of
a function of both X and Y , namely E[g(X ,Y )] = E[E[g(X ,Y )|X ]].

There are existence requirements for the expectations, which we assume hold. A brief proof is
given for (4) when X and Y are jointly continuous random variables.

Let A denote the set of real values x for which fX(x) > 0. For x ∈ A,

E[g(X ,Y )|X = x] =
∫ ∞

−∞
g(x,y) fX |Y (x|y)dy =

1
fX(x)

∫ ∞

−∞
g(x,y) fX ,Y (x,y)dy

Then E[g(X ,Y )|X ] is the function of X which takes value E[g(X ,Y )|X = x] when X = x for all
x ∈ A. Therefore

E[E[g(X ,Y )|X ]] =
∫

x∈A
E[g(X ,Y )|X = x] fX(x)dx

=
∫

x∈A
fX(x)

(
1

fX(x)

∫ ∞

−∞
g(x,y) fX ,Y (x,y)dy

)
dx

=
∫

x∈A

∫ ∞

−∞
g(x,y) fX ,Y (x,y)dydx

=
∫ ∞

−∞

∫ ∞

−∞
g(x,y) fX ,Y (x,y)dydx

= E[g(X ,Y )]

3



Examples.

1. fX ,Y (x,y) = 2 for x > 0, y > 0 and x+ y < 1. Then fX(x) = 2(1−x) for 0 < x < 1 and hence
fY |X(y|x) = 1

1−x for 0 < y < 1− x. Hence Y |X = x∼U(0,1− x).

2. Y |X = x∼ N(a+bx,σ2) and X ∼ N(µ,τ2). We will first find E[Y ] and Var(Y ).

E[Y |X ] = a+bX and Var(Y |X) = σ2. therefore E[Y ] = E[E[Y |X ]] = E[a+bX ] = a+bµ and

Var(Y ) = E[Var(Y |X)]+Var(E[Y |X ]) = E[σ2]+Var(a+bX) = σ2 +b2τ2

We will now find the m.g.f. for Y and hence obtain the distribution of Y . Now E[etY |X ] is
just the m.g.f. of Y over the conditional distribution of Y |X , so E[etY |X ] = e(a+bX)t+σ2(t2/2).
Therefore

MY (t) = E[E[etY |X ]] = E
[
e(a+bX)t+σ2(t2/2)

]
= eat+σ2(t2/2)MX(bt)

= eat+σ2(t2/2)eµ(bt)+τ2((bt)2/2) = e(a+bµ)t+(σ2+b2τ2)(t2/2)

Hence Y ∼ N(a+bµ,σ2 +b2τ2).

Joint Moment Generating Functions.

MX ,Y (s, t) = E[esX+tY ]. The properties are given below:

1. A uniqueness property holds as for the m.g.f. for a single random variable X . So if we
recognise that the joint m.g.f. comes from a specific joint p.d.f., then X ,Y have that joint p.d.f.

2. MX ,Y (0,0) = 1; MX(s) = MX ,Y (s,0), MY (t) = MX ,Y (0, t). If you know MX ,Y (s, t), you can
then find the distribution, mean and variance for each of X and Y .

3. ∂2MX ,Y (s,t)
∂s∂t evaluated at s = t = 0 gives E[XY ].

4. If X and Y are independent then MX ,Y (s, t) = E[esX etY ] = E[esX ]E[etY ] = MX(s)MY (t).

5. If MX ,Y (s, t) = g(s)h(t) then, from property 1, MX(s) = h(0)g(s), MY (t) = g(0)h(t) and
1 = g(0)h(0). Hence MX ,Y (s, t) = MX(t)MY (t) and by result 4 and result 1, concerning the
uniqueness of the joint m.g.f., X and Y are independent.
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