Probability 2 - Notes1

Review of common probability distributions

1. Single trial with probability p of success. X is the indicator random variable of the event success (so $X=1$ if the outcome is a success and $X=0$ if the outcome is a failure). Then $X \sim$ $\operatorname{Bernoulli}(p) . P(X=1)=p$ and $P(X=0)=q$ where $q=1-p \cdot E[X]=p, \operatorname{Var}(X)=p q$.
2. Sequence of n independent trials, each with probability p of success. X counts the number of successes. Then $X \sim \operatorname{Binomial}(n, p) . P(X=x)={ }^{n} C_{x} p^{x} q^{n-x}$ for $x=0,1, \ldots, n . E[X]=n p$, $\operatorname{Var}(X)=n p q$.

Binomial expansion is $(a+b)^{n}=\sum_{x=0}^{n}{ }^{n} C_{x} a^{x} b^{n-x}$. If we let $a=p$ and $b=q$ this shows that $\sum_{x=0}^{n} P(X=x)=(p+q)^{n}=1^{n}=1$.
3. Sequence of independent trials, each with probability p of success. X counts the number of trials required to obtain the first success. Then $X \sim \operatorname{Geometric}(p) . P(X=x)=q^{x-1} p$ for $x=1,2, \ldots E[X]=\frac{1}{p}, \operatorname{Var}(X)=\frac{q}{p^{2}}$.

Sum of geometric series is $\sum_{x=1}^{\infty} a r^{x-1}=\frac{a}{(1-r)}$. If we let $a=p$ and $r=q$, this shows that $\sum_{x=1}^{\infty} P(X=x)=\frac{p}{1-q}=1$.
4. Sequence of independent trials, each with probability p of success. X counts the number of trials required to obtain the $k^{t h}$ success. Then $X \sim$ Negative Binomial $(k, p) . \quad P(X=x)=$ ${ }^{x-1} C_{k-1} p^{k} q^{x-k}$ for $x=k, k+1, \ldots E[X]=\frac{k}{p}, \operatorname{Var}(X)=\frac{k q}{p^{2}}$.

Negative binomial expansion is just

$$
(1-a)^{-k}=1+(-k)(-a)+\frac{(-k)(-k-1)}{2!}(-a)^{2}+\frac{(-k)(-k-1)(-k-2)}{3!}(-a)^{3}+\ldots=\sum_{x=k}^{\infty}{ }^{x-1} C_{k-1} a^{x-k}
$$

Hence if we let $a=q$ then $\sum_{x=k}^{\infty} P(X=x)=p^{k}(1-q)^{-k}=1$.
5. If events occur randomly and independently in time, at rate λ per unit time, and X counts the number of events in a unit time interval then $X \sim \operatorname{Poisson}(\lambda) . P(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!}$ for $x=0,1, \ldots$. $E[X]=\lambda, \operatorname{Var}(X)=\lambda$.

Taylor expansion of exponential is $e^{a}=\sum_{x=0}^{\infty} \frac{a^{x}}{x!}$. Hence if we let $a=\lambda$ then $\sum_{x=0}^{\infty} P(X=x)=$ $e^{-\lambda} e^{\lambda}=1$.

Definition For a discrete random variable X which can only take non-negative integer values we define the probability generating function associated with X to be:

$$
G_{X}(t)=\sum_{x=0}^{\infty} P(X=x) t^{x}
$$

This is a power series in t. Note that $G_{X}(t)=E\left[t^{X}\right]$.
We can easily find the p.g.f. for all the common probability distributions 1-5 using the expansions given earlier. Note that the hypergeometric (covered in Probability 1) has no simple form for the p.g.f.
(1) $G_{X}(t)=q+p t$.
(2) $G_{X}(t)=\sum_{x=0}^{n}{ }^{n} C_{x}(p t)^{x} q^{n-x}=(p t+q)^{n}$.
(3) $G_{X}(t)=\sum_{x=1}^{\infty}(p t)(q t)^{x-1}=\frac{p t}{1-q t}$.
(4) $G_{X}(t)=(p t)^{k} \sum_{x=k}^{\infty}{ }^{x-1} C_{k-1}(q t)^{x-k}=\frac{(p t)^{k}}{(1-q t)^{k}}$.
(5) $G_{X}(t)=e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda t)^{x}}{x!}=e^{\lambda(t-1)}$.

It is easily seen that $G_{X}(0)=P(X=0), G_{X}(1)=1$ and $G_{X}(t)$ is monotone increasing function of t for $t \geq 0$.
$\underline{\text { Uses of the p.g.f. }}$

1. Knowing the p.g.f. determines the probability mass function.

The p.g.f., $G_{X}(t)$, is a power series with the coefficient of t^{x} just the probability $P(X=x)$. There is a unique power series expansion. Hence if X and Y are two random variables with $G_{X}(t)=G_{Y}(t)$, then $P(X=r)=P(Y=r)$ for all $r=0,1, \ldots$

If we know the p.g.f. then we can expand it in a power series and find the individual terms of the probability mass function.
e.g. $G_{X}(t)=\frac{1}{2}\left(1+t^{2}\right)=\frac{1}{2}+0 \times t+\frac{1}{2} t^{2}+0 \times t^{3}+\ldots$. Hence $P(X=0)=\frac{1}{2}, P(X=2)=\frac{1}{2}$ and $P(X=x)=0$ for all other non-negative integers x.

If we recognise the p.g.f. $G_{X}(t)$ as a p.g.f. corresponding to a specific distribution, then X has that distribution. We do not need to bother doing the power series expansion!
e.g. if $G_{X}(t)=e^{2 t-2}=e^{2(t-1)}$, this is the p.g.f. for a Poisson distribution with parameter 2. Hence $X \sim$ Poisson (2).
2. We can differentiate the p.g.f. to obtain $P(X=r)$ and the factorial moments (and hence the mean and variance of X).

$$
P(X=0)=G_{X}(0) ; P(X=1)=G_{X}^{\prime}(0) ; P(X=2)=\frac{1}{2} G_{X}^{\prime \prime}(0)
$$

In general $P(X=r)=\frac{1}{r!} G_{X}^{(r)}(0)$ where $G_{X}^{(r)}(t)=\frac{d^{r} G_{X}(t)}{d t^{r}}$.

$$
E[X]=G_{X}^{\prime}(1) ; E[X(X-1)]=G_{X}^{(2)}(1) ; \operatorname{Var}(X)=E[X(X-1)]+E[X]-(E[X])^{2}
$$

and in general the $r^{\text {th }}$ factorial moment $E[X(X-1) \ldots(X-r+1)]=G_{X}^{(r)}(1)$
This is easily seen by differentiating $G_{X}(t)=P(X=0)+t P(X=1)+t^{2} P(X=2)+\ldots$ termwise to obtain

$$
G_{X}^{\prime}(t)=P(X=1)+2 t P(X=2)+3 t^{2} P(X=3)+\ldots .
$$

from which we have $E[X]=G_{X}^{\prime}(1)$ and $P(X=1)=G_{X}^{\prime}(0)$ and for any positive integer r

$$
\frac{d^{r} G_{X}(t)}{d t^{r}}=r!P(X=r)+\frac{(r+1)!}{1!} t P(X=r+1)+\frac{(r+2)!}{2!} t^{2} P(X=r+2)+\ldots
$$

from which we have $E[X(X-1) \ldots(X-r+1)]=G_{X}^{(r)}(1)$ and $P(X=r)=\frac{G_{X}^{(r)}(0)}{r!}$
e.g. If $G_{X}(t)=\frac{1+t}{2} e^{(t-1)}$ find $E[X], \operatorname{Var}(X), P(X=0)$ and $P(X=1)$.

$$
\begin{gathered}
G_{X}^{\prime}(t)=\frac{1}{2} e^{(t-1)}+\frac{1+t}{2} e^{(t-1)} \\
G_{X}^{(2)}(t)=\frac{1}{2} e^{(t-1)}+\frac{1}{2} e^{(t-1)}+\frac{1+t}{2} e^{(t-1)}
\end{gathered}
$$

Hence $E[X]=G_{X}^{\prime}(1)=\frac{3}{2}, \operatorname{var}(X)=G_{X}^{(2)}(1)+\frac{3}{2}-\frac{9}{4}=\frac{5}{4}, P(X=0)=G_{X}(0)=\frac{e^{-1}}{2}$ and $P(X=$ $1)=G_{X}^{\prime}(0)=e^{-1}$.

3. Using the p.g.f. to find the distribution of the sum of two or more independent random variables.

Recall that if X and Y are independent random variables then $E[g(X) h(Y)]=E[g(X)] E[h(Y)]$.
Let X and Y be independent random variables with p.g.f.'s $G_{X}(t)$ and $G_{Y}(t)$. Then $Z=X+Y$ has p.g.f.

$$
G_{Z}(t)=E\left[t^{Z}\right]=E\left[t^{X+Y}\right]=E\left[t^{X} t^{Y}\right]=E\left[t^{X}\right] E\left[t^{Y}\right]=G_{X}(t) G_{Y}(t)
$$

This extends to the sum of a fixed number n of independent random variables.
If X_{1}, \ldots, X_{n} are independent and $Z=\sum_{j=1}^{n} X_{j}$ then

$$
G_{Z}(t)=\prod_{j=1}^{n} G_{X_{j}}(t)
$$

e.g. Let X and Y be independent random variables with $X \sim \operatorname{Binomial}(n, p)$ and $Y \sim \operatorname{Binomial}(m, p)$ and let $Z=X+Y$. Then

$$
G_{Z}(t)=G_{X}(t) G_{Y}(t)=(p t+q)^{n}(p t+q)^{m}=(p t+q)^{m+n}
$$

This is the p.g.f. of a binomial random variable. Hence $Z \sim \operatorname{Binomial}(n+m, p)$.
Let X_{1}, \ldots, X_{m} be m independent random variables with $X_{j} \sim \operatorname{Binomial}\left(n_{j}, p\right)$ and let $Z=\sum_{j=1}^{m} X_{j}$ and $N=\sum_{j=1}^{m} n_{j}$. Then

$$
G_{Z}(t)=\prod_{j=1}^{m} G_{X_{j}}(t)=\prod_{j=1}^{m}(p t+q)^{n_{j}}=(p t+q)^{N}
$$

This is the p.g.f. of a binomial random variable. Hence $Z \sim \operatorname{Binomial}(N, p)$.

