Probability 2 - Notesl

Review of common probability distributions

1. Single trial with probability p of success. X is the indicator random variable of the event
success (so X = 1 if the outcome is a success and X = 0 if the outcome is a failure). Then X ~
Bernoulli(p). P(X =1) = p and P(X =0) = g where ¢ = 1 — p. E[X] = p, Var(X) = pq.

2. Sequence of n independent trials, each with probability p of success. X counts the number
of successes. Then X ~ Binomial(n,p). P(X =x) ="Cp*q"* forx =0,1,...,n. E[X] = np,
Var(X) = npq.

Binomial expansion is (a +b)" = Y}_,"Cra*b"*. If we let a = p and b = ¢ this shows that
"o PX=x)=(p+q)=1"=1

3. Sequence of independent trials, each with probability p of success. X counts the number
of trials required to obtain the first success. Then X ~Geometric(p). P(X = x) = ¢* !p for
x=1,2,.. E[X] = J, Var(X) = p

a
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Sum of geometric series is Yo° ,ar" ! =

Y PX=x)=+5=1

If we let @ = p and r = ¢, this shows that

—~

4. Sequence of independent trials, each with probability p of success. X counts the number
of trials required to obtain the k' success. Then X ~Negative Binomial (k,p). P(X = x) =
G 1pkq T forx = k,k+1,... E[X] = £, Var(X) = ;j—;’

Negative binomial expansion is just

NCORC

(1—a) *=1+(—k)(—a)+ (—a)’+..= ix_le_lax_k
x=k

Hence if we leta =g then ¥, P(X =x) = p*(1 —¢q)* = 1.

5. If events occur randomly and independently in time, at rate A per unit time, and X counts the

number of events in a unit time interval then X ~Poisson(A). P(X =x) = Mf!_ * for x = 0,1,....
E[X] =M\ Var(X) =\

Taylor expansion of exponential is e =Y ;LT. Hence if we let a = A then) . (P(X =x) =
A A
e et =1.



Probability Generating Function (p.g.f)

Definition For a discrete random variable X which can only take non-negative integer values
we define the probability generating function associated with X to be:

This is a power series in ¢. Note that Gy () = E[tX].
We can easily find the p.g.f. for all the common probability distributions 1-5 using the expan-

sions given earlier. Note that the hypergeometric (covered in Probability 1) has no simple form
for the p.g.f.

(1) Gx(t) = q+ pt.
(2) Gx(t) = Xi_o"Cu(pt)*q" " = (pt+q)".

(3) Gx(1) = Xy (p1)(gn)* ' = 2.

k
(4) Gy (1) = (p* LG () = {20

(5) Gx (1) = szx o 7:61')-’6 _ Mi—1).

It is easily seen that Gx(0) = P(X =0), Gx(1) = 1 and Gx () is monotone increasing function
of t fort > 0.

Uses of the p.g.f.

1. Knowing the p.g.f. determines the probability mass function.

The p.g.f., Gx(t), is a power series with the coefficient of ¢* just the probability P(X = x).
There is a unique power series expansion. Hence if X and Y are two random variables with
Gx(t) = Gy(t),then P(X =r)=P(Y =r) forall r =0, 1,....

If we know the p.g.f. then we can expand it in a power series and find the individual terms of
the probability mass function.

eg Gx(t)=3(1+£2) =1 +0xt+ 32 +0x 3 +.... Hence P(X = 0) = 4, P(X =2) = 4 and
PX=x)=0 for all other non- negatlve integers x.

If we recognise the p.g.f. Gx(¢) as a p.g.f. corresponding to a specific distribution, then X has
that distribution. We do not need to bother doing the power series expansion!

e.g. if Gx(t) = e¥2 = ¢~V this is the p.g.f. for a Poisson distribution with parameter 2.
Hence X ~Poisson (2).



2. We can differentiate the p.g.f. to obtain P(X = r) and the factorial moments (and hence
the mean and variance of X).

P(X = 0) = Gx(0): P(X = 1) = Gy (0); P(X =2) = %G;}(O)

In general P(X =r) = %Gg) (0) where Gg{) (1) = drgtx,(t).

E[X] = Gx(1); EIX(X —1)] = G¢)(1); Var(X) = E[X (X — )] + E[X] - (E[X])?

and in general the " factorial moment E[X (X —1)...(X —r+1)] = G)({)(l)

This is easily seen by differentiating Gx (t) = P(X =0) +tP(X = 1) +1*P(X =2)+... termwise
to obtain

Gy(t) =P(X =1)+2tP(X =2)+3*P(X =3) + ...
from which we have E[X] = Gy (1) and P(X = 1) = Gy (0) and for any positive integer r

d"Gx (1) (r+1)!

1!

2)!
(”;—‘)#‘P(X =r+2)+...

=rlPX=r)+

tPX=r+1)+

Gy (0)
r!

from which we have E[X(X —1)...(X —r+1)] = Gy’ (1) and P(X = r) =

e.g. If Gx(t) = e~V find E[X], Var(X), P(X =0) and P(X = 1).

/ 1 141
Gy(t) = 3¢tV + %e(t_l)

Hence E[X] = G/X(l) =

var(X) =G (1) +3 =% =3, P(X =0) = Gx(0) = - and P(X =
1) =Gy (0)=e".
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3. Using the p.g.f. to find the distribution of the sum of two or more independent random
variables.

Recall that if X and Y are independent random variables then E[g(X)h(Y)] = E[g(X)]|E[h(Y)].

Let X and Y be independent random variables with p.g.f.’s Gx(¢) and Gy (t). ThenZ=X+Y
has p.g.f.



Gz(t) = E[t] = E[*™] = E[t*¢'] = E[{"]E[t"] = Gx (t)Gy (¢)

This extends to the sum of a fixed number n of independent random variables.

If Xi,...,X, are independent and Z =}, X then

G(1) = [ Gy, (1
=1

e.g. Let X and Y be independent random variables with X ~ Binomial (n, p) and Y ~ Binomial(m, p)
and let Z= X +Y. Then

Gz(t) = Gx(t)Gy (1) = (pt+q)" (pt +q)" = (pt +¢q)"™"

This is the p.g.f. of a binomial random variable. Hence Z ~ Binomial (n+m, p).

Let X, ...,X,, be m independent random variables with X; ~ Binomial(nj,p) and letZ =Y, X;
and N = ):Tzl n;. Then

G2(t) = [T G, (1) = [T (ot + )" = (pt + )"
=1 =1

This is the p.g.f. of a binomial random variable. Hence Z ~ Binomial(N, p).



