
Probability 2 - Notes1

Review of common probability distributions

1. Single trial with probability p of success. X is the indicator random variable of the event
success (so X = 1 if the outcome is a success and X = 0 if the outcome is a failure). Then X ∼
Bernoulli(p). P(X = 1) = p and P(X = 0) = q where q = 1− p. E[X ] = p, Var(X) = pq.

2. Sequence of n independent trials, each with probability p of success. X counts the number
of successes. Then X ∼ Binomial(n, p). P(X = x) = nCx pxqn−x for x = 0,1, ...,n. E[X ] = np,
Var(X) = npq.

Binomial expansion is (a + b)n = ∑n
x=0

nCxaxbn−x. If we let a = p and b = q this shows that
∑n

x=0 P(X = x) = (p+q)n = 1n = 1.

3. Sequence of independent trials, each with probability p of success. X counts the number
of trials required to obtain the first success. Then X ∼Geometric(p). P(X = x) = qx−1 p for
x = 1,2, ... E[X ] = 1

p , Var(X) = q
p2 .

Sum of geometric series is ∑∞
x=1 arx−1 = a

(1−r) . If we let a = p and r = q, this shows that

∑∞
x=1 P(X = x) = p

1−q = 1.

4. Sequence of independent trials, each with probability p of success. X counts the number
of trials required to obtain the kth success. Then X ∼Negative Binomial (k, p). P(X = x) =
x−1Ck−1 pkqx−k for x = k,k +1, ... E[X ] = k

p , Var(X) = kq
p2 .

Negative binomial expansion is just

(1−a)−k = 1+(−k)(−a)+
(−k)(−k−1)

2!
(−a)2+

(−k)(−k−1)(−k−2)
3!

(−a)3+...=
∞

∑
x=k

x−1Ck−1ax−k

Hence if we let a = q then ∑∞
x=k P(X = x) = pk(1−q)−k = 1.

5. If events occur randomly and independently in time, at rate λ per unit time, and X counts the
number of events in a unit time interval then X ∼Poisson(λ). P(X = x) = λxe−λ

x! for x = 0,1, ....
E[X ] = λ, Var(X) = λ.

Taylor expansion of exponential is ea = ∑∞
x=0

ax

x! . Hence if we let a = λ then∑∞
x=0 P(X = x) =

e−λeλ = 1.



Probability Generating Function (p.g.f)

Definition For a discrete random variable X which can only take non-negative integer values
we define the probability generating function associated with X to be:

GX(t) =
∞

∑
x=0

P(X = x)tx

This is a power series in t. Note that GX(t) = E[tX ].

We can easily find the p.g.f. for all the common probability distributions 1-5 using the expan-
sions given earlier. Note that the hypergeometric (covered in Probability 1) has no simple form
for the p.g.f.

(1) GX(t) = q+ pt.

(2) GX(t) = ∑n
x=0

nCx(pt)xqn−x = (pt +q)n.

(3) GX(t) = ∑∞
x=1(pt)(qt)x−1 = pt

1−qt .

(4) GX(t) = (pt)k ∑∞
x=k

x−1Ck−1(qt)x−k = (pt)k

(1−qt)k .

(5) GX(t) = e−λ ∑∞
x=0

(λt)x

x! = eλ(t−1).

It is easily seen that GX(0) = P(X = 0), GX(1) = 1 and GX(t) is monotone increasing function
of t for t ≥ 0.

Uses of the p.g.f.

1. Knowing the p.g.f. determines the probability mass function.

The p.g.f., GX(t), is a power series with the coefficient of tx just the probability P(X = x).
There is a unique power series expansion. Hence if X and Y are two random variables with
GX(t) = GY (t), then P(X = r) = P(Y = r) for all r = 0,1, ....

If we know the p.g.f. then we can expand it in a power series and find the individual terms of
the probability mass function.

e.g. GX(t) = 1
2(1+ t2) = 1

2 +0× t + 1
2t2 +0× t3 + .... Hence P(X = 0) = 1

2 , P(X = 2) = 1
2 and

P(X = x) = 0 for all other non-negative integers x.

If we recognise the p.g.f. GX(t) as a p.g.f. corresponding to a specific distribution, then X has
that distribution. We do not need to bother doing the power series expansion!

e.g. if GX(t) = e2t−2 = e2(t−1), this is the p.g.f. for a Poisson distribution with parameter 2.
Hence X ∼Poisson (2).



2. We can differentiate the p.g.f. to obtain P(X = r) and the factorial moments (and hence
the mean and variance of X).

P(X = 0) = GX(0); P(X = 1) = G
′
X(0); P(X = 2) =

1
2

G
′′
X(0)

In general P(X = r) = 1
r!G

(r)
X (0) where G(r)

X (t) = drGX (t)
dtr .

E[X ] = G
′
X(1); E[X(X −1)] = G(2)

X (1); Var(X) = E[X(X −1)]+E[X ]− (E[X ])2

and in general the rth factorial moment E[X(X −1)...(X− r +1)] = G(r)
X (1)

This is easily seen by differentiating GX(t) = P(X = 0)+tP(X = 1)+t2P(X = 2)+ ... termwise
to obtain

G
′
X(t) = P(X = 1)+2tP(X = 2)+3t2P(X = 3)+ ....

from which we have E[X ] = G
′
X(1) and P(X = 1) = G

′
X(0) and for any positive integer r

drGX(t)
dtr = r!P(X = r)+

(r +1)!
1!

tP(X = r +1)+
(r +2)!

2!
t2P(X = r +2)+ ...

from which we have E[X(X−1)...(X − r +1)] = G(r)
X (1) and P(X = r) = G(r)

X (0)
r!

e.g. If GX(t) = 1+t
2 e(t−1) find E[X ], Var(X), P(X = 0) and P(X = 1).

G
′
X(t) =

1
2

e(t−1) +
1+ t

2
e(t−1)

G(2)
X (t) =

1
2

e(t−1) +
1
2

e(t−1) +
1+ t

2
e(t−1)

Hence E[X ] = G
′
X(1) = 3

2 , var(X) = G(2)
X (1)+ 3

2 − 9
4 = 5

4 , P(X = 0) = GX(0) = e−1

2 and P(X =
1) = G

′
X(0) = e−1.

3. Using the p.g.f. to find the distribution of the sum of two or more independent random
variables.

Recall that if X and Y are independent random variables then E[g(X)h(Y )] = E[g(X)]E[h(Y )].

Let X and Y be independent random variables with p.g.f.’s GX(t) and GY (t). Then Z = X +Y
has p.g.f.



GZ(t) = E[tZ] = E[tX+Y ] = E[tX tY ] = E[tX ]E[tY ] = GX(t)GY (t)

This extends to the sum of a fixed number n of independent random variables.

If X1, ...,Xn are independent and Z = ∑n
j=1 X j then

GZ(t) =
n

∏
j=1

GX j(t)

e.g. Let X and Y be independent random variables with X ∼Binomial(n, p) and Y ∼Binomial(m, p)
and let Z = X +Y . Then

GZ(t) = GX(t)GY (t) = (pt +q)n(pt +q)m = (pt +q)m+n

This is the p.g.f. of a binomial random variable. Hence Z ∼ Binomial(n+m, p).

Let X1, ...,Xm be m independent random variables with X j ∼Binomial(n j, p) and let Z = ∑m
j=1 X j

and N = ∑m
j=1 n j. Then

GZ(t) =
m

∏
j=1

GX j(t) =
m

∏
j=1

(pt +q)n j = (pt +q)N

This is the p.g.f. of a binomial random variable. Hence Z ∼ Binomial(N, p).


