Probability 2 - Notes1

Review of common probability distributions

1. Single trial with probability p of success. X is the indicator random variable of the event success (so X = 1 if the outcome is a success and X = 0 if the outcome is a failure). Then $X \sim$ Bernoulli(p). P(X = 1) = p and P(X = 0) = q where q = 1 - p. E[X] = p, Var(X) = pq.

2. Sequence of *n* independent trials, each with probability *p* of success. *X* counts the number of successes. Then $X \sim \text{Binomial}(n, p)$. $P(X = x) = {}^{n}C_{x}p^{x}q^{n-x}$ for x = 0, 1, ..., n. E[X] = np, Var(X) = npq.

Binomial expansion is $(a+b)^n = \sum_{x=0}^n {}^nC_x a^x b^{n-x}$. If we let a = p and b = q this shows that $\sum_{x=0}^n P(X = x) = (p+q)^n = 1^n = 1$.

3. Sequence of independent trials, each with probability *p* of success. *X* counts the number of trials required to obtain the first success. Then *X* ~Geometric(*p*). $P(X = x) = q^{x-1}p$ for $x = 1, 2, ..., E[X] = \frac{1}{p}, Var(X) = \frac{q}{p^2}$.

Sum of geometric series is $\sum_{x=1}^{\infty} ar^{x-1} = \frac{a}{(1-r)}$. If we let a = p and r = q, this shows that $\sum_{x=1}^{\infty} P(X = x) = \frac{p}{1-q} = 1$.

4. Sequence of independent trials, each with probability *p* of success. *X* counts the number of trials required to obtain the *k*th success. Then *X* ~Negative Binomial (*k*, *p*). $P(X = x) = x^{-1}C_{k-1}p^kq^{x-k}$ for $x = k, k+1, ... E[X] = \frac{k}{p}, Var(X) = \frac{kq}{p^2}$.

Negative binomial expansion is just

$$(1-a)^{-k} = 1 + (-k)(-a) + \frac{(-k)(-k-1)}{2!}(-a)^2 + \frac{(-k)(-k-1)(-k-2)}{3!}(-a)^3 + \dots = \sum_{x=k}^{\infty} {}^{x-1}C_{k-1}a^{x-k}$$

Hence if we let a = q then $\sum_{x=k}^{\infty} P(X = x) = p^k (1-q)^{-k} = 1$.

5. If events occur randomly and independently in time, at rate λ per unit time, and *X* counts the number of events in a unit time interval then $X \sim \text{Poisson}(\lambda)$. $P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$ for x = 0, 1, ... $E[X] = \lambda$, $Var(X) = \lambda$.

Taylor expansion of exponential is $e^a = \sum_{x=0}^{\infty} \frac{a^x}{x!}$. Hence if we let $a = \lambda$ then $\sum_{x=0}^{\infty} P(X = x) = e^{-\lambda}e^{\lambda} = 1$.

Definition For a discrete random variable *X* which can only take non-negative integer values we define the probability generating function associated with *X* to be:

$$G_X(t) = \sum_{x=0}^{\infty} P(X=x)t^x$$

This is a power series in *t*. Note that $G_X(t) = E[t^X]$.

We can easily find the p.g.f. for all the common probability distributions 1-5 using the expansions given earlier. Note that the hypergeometric (covered in Probability 1) has no simple form for the p.g.f.

$$(1) G_X(t) = q + pt.$$

(2)
$$G_X(t) = \sum_{x=0}^n {}^n C_x(pt)^x q^{n-x} = (pt+q)^n$$
.

(3)
$$G_X(t) = \sum_{x=1}^{\infty} (pt)(qt)^{x-1} = \frac{pt}{1-qt}$$

(4)
$$G_X(t) = (pt)^k \sum_{x=k}^{\infty} {}^{x-1}C_{k-1}(qt)^{x-k} = \frac{(pt)^k}{(1-qt)^k}.$$

(5)
$$G_X(t) = e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda t)^x}{x!} = e^{\lambda(t-1)}$$

It is easily seen that $G_X(0) = P(X = 0)$, $G_X(1) = 1$ and $G_X(t)$ is monotone increasing function of *t* for $t \ge 0$.

Uses of the p.g.f.

1. Knowing the p.g.f. determines the probability mass function.

The p.g.f., $G_X(t)$, is a power series with the coefficient of t^x just the probability P(X = x). There is a unique power series expansion. Hence if X and Y are two random variables with $G_X(t) = G_Y(t)$, then P(X = r) = P(Y = r) for all r = 0, 1, ...

If we know the p.g.f. then we can expand it in a power series and find the individual terms of the probability mass function.

e.g. $G_X(t) = \frac{1}{2}(1+t^2) = \frac{1}{2} + 0 \times t + \frac{1}{2}t^2 + 0 \times t^3 + \dots$ Hence $P(X=0) = \frac{1}{2}$, $P(X=2) = \frac{1}{2}$ and P(X=x) = 0 for all other non-negative integers *x*.

If we recognise the p.g.f. $G_X(t)$ as a p.g.f. corresponding to a specific distribution, then X has that distribution. We do not need to bother doing the power series expansion!

e.g. if $G_X(t) = e^{2t-2} = e^{2(t-1)}$, this is the p.g.f. for a Poisson distribution with parameter 2. Hence $X \sim \text{Poisson}(2)$. 2. We can differentiate the p.g.f. to obtain P(X = r) and the factorial moments (and hence the mean and variance of X).

$$P(X=0) = G_X(0); P(X=1) = G'_X(0); P(X=2) = \frac{1}{2}G''_X(0)$$

In general $P(X = r) = \frac{1}{r!} G_X^{(r)}(0)$ where $G_X^{(r)}(t) = \frac{d^r G_X(t)}{dt^r}$.

$$E[X] = G'_X(1); E[X(X-1)] = G^{(2)}_X(1); Var(X) = E[X(X-1)] + E[X] - (E[X])^2$$

and in general the r^{th} factorial moment $E[X(X-1)...(X-r+1)] = G_X^{(r)}(1)$

This is easily seen by differentiating $G_X(t) = P(X = 0) + tP(X = 1) + t^2P(X = 2) + ...$ termwise to obtain

$$G'_X(t) = P(X = 1) + 2tP(X = 2) + 3t^2P(X = 3) + \dots$$

from which we have $E[X] = G'_X(1)$ and $P(X = 1) = G'_X(0)$ and for any positive integer r

$$\frac{d^r G_X(t)}{dt^r} = r! P(X=r) + \frac{(r+1)!}{1!} t P(X=r+1) + \frac{(r+2)!}{2!} t^2 P(X=r+2) + \dots$$

from which we have $E[X(X-1)...(X-r+1)] = G_X^{(r)}(1)$ and $P(X=r) = \frac{G_X^{(r)}(0)}{r!}$

e.g. If $G_X(t) = \frac{1+t}{2}e^{(t-1)}$ find E[X], Var(X), P(X = 0) and P(X = 1).

$$G'_X(t) = \frac{1}{2}e^{(t-1)} + \frac{1+t}{2}e^{(t-1)}$$

$$G_X^{(2)}(t) = \frac{1}{2}e^{(t-1)} + \frac{1}{2}e^{(t-1)} + \frac{1+t}{2}e^{(t-1)}$$

Hence $E[X] = G'_X(1) = \frac{3}{2}$, $var(X) = G_X^{(2)}(1) + \frac{3}{2} - \frac{9}{4} = \frac{5}{4}$, $P(X = 0) = G_X(0) = \frac{e^{-1}}{2}$ and $P(X = 1) = G'_X(0) = e^{-1}$.

3. Using the p.g.f. to find the distribution of the sum of two or more independent random variables.

Recall that if *X* and *Y* are independent random variables then E[g(X)h(Y)] = E[g(X)]E[h(Y)].

Let X and Y be independent random variables with p.g.f.'s $G_X(t)$ and $G_Y(t)$. Then Z = X + Y has p.g.f.

$$G_Z(t) = E[t^Z] = E[t^{X+Y}] = E[t^X t^Y] = E[t^X]E[t^Y] = G_X(t)G_Y(t)$$

This extends to the sum of a fixed number n of independent random variables.

If $X_1, ..., X_n$ are independent and $Z = \sum_{j=1}^n X_j$ then

$$G_Z(t) = \prod_{j=1}^n G_{X_j}(t)$$

e.g. Let *X* and *Y* be independent random variables with $X \sim Binomial(n, p)$ and $Y \sim Binomial(m, p)$ and let Z = X + Y. Then

$$G_Z(t) = G_X(t)G_Y(t) = (pt+q)^n(pt+q)^m = (pt+q)^{m+n}$$

This is the p.g.f. of a binomial random variable. Hence $Z \sim Binomial(n+m, p)$.

Let $X_1, ..., X_m$ be *m* independent random variables with $X_j \sim Binomial(n_j, p)$ and let $Z = \sum_{j=1}^m X_j$ and $N = \sum_{j=1}^m n_j$. Then

$$G_Z(t) = \prod_{j=1}^m G_{X_j}(t) = \prod_{j=1}^m (pt+q)^{n_j} = (pt+q)^N$$

This is the p.g.f. of a binomial random variable. Hence $Z \sim Binomial(N, p)$.