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Enriched variants of matroids

A matroid captures the linear dependences of a vector configuration.
But you might want more:

Oriented matroids come from real configurations, and remember signs
(e.g. in circuits). [Bland-las Vergnas]

Complex matroids come from complex configurations, and remember
phases. [Anderson-Delucchi]

Valuated matroids come from configs over a field with valuation, and
remember valuations. [Dress-Wenzel]

(Quasi-)arithmetic matroids come from configurations over Z, and
remember indices of sublattices. [D’Adderio-Moci]

Matroids over rings encompass these latter two.
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Example: quasi-arithmetic matroids

“Definition”
A quasi-arithmetic matroid is a matroid with the data of an integer for
each subset of the ground set, satisfying (some axioms).

Some applications: arrangements of subtori, zonotopes, box splines.

A realizable quasi-arithmetic matroid ←− a vector config.
The data is the index of each sublattice in its saturation.

v1 = (−2, 1) v2 = (1, 1) v3 = (4, 2)
Matroid: uniform U2,3

set ∅ 1 2 12
index 1 1 1 3

set 3 13 23 123
index 2 8 2 1
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Our view of vector configurations

Why record only the cardinality of the torsion in the quotient?
And why separate it from the rank?

Instead, record the quotient group itself, Zd/〈vectors〉.

v1 = (−2, 1) v2 = (1, 1) v3 = (4, 2) set ∅ 1 2 12
group Z2 Z Z Z/3

set 3 13 23 123
group Z⊕ Z/2 Z/8 Z/2 1
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Our view of vector configurations

Why record only the cardinality of the torsion in the quotient?
And why separate it from the rank?

Instead, record the quotient module itself, Rd/〈vectors〉.

Example
Let k be a field. If v1, . . . , vn ∈ V , then

V /〈vi : i ∈ A〉

is a vector space of dimension corank A.

Fact
A corank function belongs to a matroid if every ≤2 element minor
could come from a vector configuration.
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Matroids over rings

Let R be a commutative ring.

Definition
A matroid M over R on ground set E associates to each subset A ⊆ E
a finitely generated module M(A), such that
every ≤2 element minor of M could come from a vector configuration.

i.e. ∀A, b, c : there is a pushout square

M(A)

y

//

��

M(A ∪̇ {b})

��
M(A ∪̇ {c}) // M(A ∪̇ {b, c})

where all the maps are surjections with cyclic kernel.

The data of M includes no morphisms!
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A trinity of special cases

Main theorem

If R is: then matroids over R recover:
I any field (usual) matroids

I any DVR valuated matroids

I Z quasi-arithmetic matroids

Fink & Moci Matroids over a ring 7 / 15



Dedekind domains

From now on R is a Dedekind domain, i.e. a regular one-dim’l ring.

Review: structure theory of R-modules
Every R-module uniquely has the form

Rc−1 ⊕ P
or 0

}
︸ ︷︷ ︸

projective

⊕
⊕

R/mai
i︸ ︷︷ ︸

torsion

for P a rank 1 projective module, mi maximal ideals, ai > 0 integers.

One thing this is good for:

Theorem
Matroids over a Dedekind domain have duals.

Construction: Gale duality, more or less.
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Structure of matroids over a Dedekind domain

You can do base changes (e.g. localization) on matroids over rings:

{matroids over R}
—⊗RS

−−−−−→ {matroids over S}

Strategy
To understand matroids over a Dedekind domain R :

1. What can their localizations be like?
2. When does a family of localizations come from a global matroid?

The only interesting obstruction to step 2. is controlled by Pic(R).
(Thus no problems over Z.)
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Local structure: modules over a DVR

TFAIB: Example

finitely generated modules over a DVR Nλ = R ⊕ R/m3 ⊕ R/m

partitions allowing infinite parts λ =

nonincreasing sequences in N d(Nλ) = 3, 2, 2, 1, 1, 1, 1, . . .

Theorem (Hall, . . . )

If λ, µ, ν have finite parts, the number of exact sequences

0→ Nλ → Nν → Nµ → 0

up to isomorphism is the Littlewood-Richardson coefficient cν
λµ.

Cyclic kernel =⇒ Pieri rule.
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Local structure: matroids over a DVR

If N is an R-module, let dn(N) = # boxes in column n,
(n may be ∞) d≤n(N) = # boxes in or left of column n.

Theorem
M is a 1-element matroid over R ⇐⇒ dn(M(1)) − dn(M(∅)) ∈ {0, 1}.

Theorem
M is a 2-element matroid over R ⇐⇒ further, d≤n is supermodular:

d≤n(M(∅)) + d≤n(M(12)) ≥ d≤n(M(1)) + d≤n(M(2)),

and equality is attained if dn(M(1)) 6= dn(M(2)).

Theorem
M is a 3-element matroid over R =⇒ the minimum among

d≤n(M(1)) + d≤n(M(23)), d≤n(M(2)) + d≤n(M(13)),

d≤n(M(3)) + d≤n(M(12)) is attained twice.
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The tropics

The last theorem says that, if pA := d≤n(M(A)), the Plücker relation

pAbpAcd − pAcpAbd + pAdpAbc = 0

for the full flag variety vanishes tropically.

Conjecture

The vector of d≤n(M(A)) for all A defines a point on the tropical full
flag variety*.

Theorem
The vector of d≤n(M(A)) defines a point on each tropical
Grassmannian*.
Equivalently, d≤n(M(A)) is a valuated matroid.

* Tropical experts: I really mean Dressians.
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The Tutte-Grothendieck ring

The Tutte-Grothendieck group has generators {TM : M a matroid}

and relations
TM = TM\i + TM/i .

In fact it’s a ring, with TMTM ′ = TM⊕M ′ .

TM is the Tutte polynomial of M.

Theorem (Crapo, Brylawski)

The Tutte-Grothendieck ring is Z[x − 1, y − 1], with

TM =
∑
A⊆E

(x − 1)corankM(A) (y − 1)corankM∗ (E\A)
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The Tutte-Grothendieck ring of matroids over R

Let S be the monoid ring of fin. gen. R-modules (up to ∼=) under
direct sum.

Theorem
The Tutte-Grothendieck ring of matroids over R is essentially S ⊗ S,
with

class of M =
∑
A⊆E

XM(A) Y M∗(E\A)

Why “essentially”? M(A) and M∗(E \ A) must have the same torsion
part.

One specialization: Brändén-Moci’s Tutte quasipolynomial.
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Looking ahead

Are matroids over rings relevant to
I Chmutov’s “arithmetic flow quasipolynomial” of simplicial

complexes (over Z⊕ Z)?
I point configurations in type A Bruhat-Tits buildings

(over a DVR)?

Thank you!
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Why Dedekind domains?

Regularity makes the projective modules and K -theory well-behaved.

One-dimensionality makes our maps essentially unique:

Fact
If R is a Dedekind domain, then given two R-modules M, N,
all cyclic kernels of surjections M � N are isomorphic.

That is, the Pieri rule is coefficient-free.

Counterexample in dimension 2

Two surjections between two k[x , y ]-modules with nonisomorphic
cyclic kernels:

Fink & Moci Matroids over a ring 16 / 15


