Matroids over a ring

\author{
Alex Fink
 Luca Moci
 MSRI
 Paris 7
 North Carolina State
 ```
arXiv:1209.6571

```
}

Special Session on Algebraic and Topological Combinatorics
Tulane University
October 13, 2012

\section*{Outline}
- Context: enriched variants of matroids
- Matroids over a ring
- Special cases
- Structure theory: local and global
- The Tutte-Grothendieck group

\section*{Enriched variants of matroids}

A matroid captures the linear dependences of a vector configuration.
But you might want more:
Oriented matroids come from real configurations, and remember signs (e.g. in circuits).
[Bland-las Vergnas]
Complex matroids come from complex configurations, and remember phases.

Valuated matroids come from configs over a field with valuation, and remember valuations.
[Dress-Wenzel]
(Quasi-)arithmetic matroids come from configurations over \(\mathbb{Z}\), and remember indices of sublattices.

Matroids over rings encompass these latter two

\section*{Enriched variants of matroids}

A matroid captures the linear dependences of a vector configuration. But you might want more:

Oriented matroids come from real configurations, and remember signs (e.g. in circuits)

Complex matroids come from complex configurations, and remember phases

Valuated matroids come from configs over a field with valuation, and remember valuations.
[Dress-Wenzel]
(Quasi-)arithmetic matroids come from configurations over \(\mathbb{Z}\), and remember indices of sublattices.

Matroids over rings encompass these latter two.

\section*{Example: quasi-arithmetic matroids}
"Definition"
A quasi-arithmetic matroid is a matroid with the data of an integer for each subset of the ground set, satisfying (some axioms).

Some applications: arrangements of subtori, zonotopes, box splines.

A realizable quasi-arithmetic matroid \(\longleftarrow\) a vector config
The data is the index of each sublattice in its saturation.



\section*{Example: quasi-arithmetic matroids}

\section*{"Definition"}

A quasi-arithmetic matroid is a matroid with the data of an integer for each subset of the ground set, satisfying (some axioms).

Some applications: arrangements of subtori, zonotopes, box splines.
A realizable quasi-arithmetic matroid \(\longleftarrow\) a vector config. The data is the index of each sublattice in its saturation.


Matroid: uniform \(U_{2,3}\)
\begin{tabular}{lcccc} 
set & \(\emptyset\) & 1 & 2 & 12 \\
index & 1 & 1 & 1 & 3 \\
& & & & \\
set & 3 & 13 & 23 & 123 \\
index & 2 & 8 & 2 & 1
\end{tabular}

\section*{Our view of vector configurations}

Why record only the cardinality of the torsion in the quotient?
And why separate it from the rank?
Instead, record the quotient group itself, \(\mathbb{Z}^{d} /\langle\) vectors \(\rangle\).


\section*{Our view of vector configurations}

Why record only the cardinality of the torsion in the quotient?
And why separate it from the rank?
Instead, record the quotient module itself, \(R^{d} /\langle\) vectors \(\rangle\).

\section*{Example}

Let \(\mathbf{k}\) be a field. If \(v_{1}, \ldots, v_{n} \in V\), then
\[
V /\left\langle v_{i}: i \in A\right\rangle
\]
is a vector space of dimension corank \(A\).

A corank function belongs to a matroid if every \(\leq 2\) element minor could come from a vector configuration.

\section*{Our view of vector configurations}

Why record only the cardinality of the torsion in the quotient?
And why separate it from the rank?
Instead, record the quotient module itself, \(R^{d} /\langle\) vectors \(\rangle\).

\section*{Example}

Let \(\mathbf{k}\) be a field. If \(v_{1}, \ldots, v_{n} \in V\), then
\[
V /\left\langle v_{i}: i \in A\right\rangle
\]
is a vector space of dimension \(\operatorname{corank} A\).

\section*{Fact}

A corank function belongs to a matroid if every \(\leq 2\) element minor could come from a vector configuration.

\section*{Matroids over rings}

Let \(R\) be a commutative ring.

\section*{Definition}

A matroid \(M\) over \(R\) on ground set \(E\) associates to each subset \(A \subseteq E\) a finitely generated module \(M(A)\), such that every \(\leq 2\) element minor of \(M\) could come from a vector configuration.
\(\forall A, b, c\) : there is a pushout square

where all the maps are surjections with cyclic kernel

The data of \(M\) includes no morphisms!

\section*{Matroids over rings}

Let \(R\) be a commutative ring.

\section*{Definition}

A matroid \(M\) over \(R\) on ground set \(E\) associates to each subset \(A \subseteq E\) a finitely generated module \(M(A)\), such that every \(\leq 2\) element minor of \(M\) could come from a vector configuration.
i.e. \(\forall A, b, c\) : there is a pushout square

where all the maps are surjections with cyclic kernel.

The data of \(M\) includes no morphisms!

\section*{A trinity of special cases}

Main theorem
If \(R\) is: \(\quad\) then matroids over \(R\) recover:
- any field (usual) matroids
- any DVR valuated matroids
- \(\mathbb{Z}\)
quasi-arithmetic matroids

\section*{Dedekind domains}

From now on \(R\) is a Dedekind domain, i.e. a regular one-dim'l ring.
Review: structure theory of \(R\)-modules
Every \(R\)-module uniquely has the form

for \(P\) a rank 1 projective module, \(\mathfrak{m}_{i}\) maximal ideals, \(a_{i}>0\) integers.

One thing this is good for:

Matroids over a Dedekind domain have duals.
Construction: Gale duality, more or less.

\section*{Dedekind domains}

From now on \(R\) is a Dedekind domain, i.e. a regular one-dim'l ring.
Review: structure theory of \(R\)-modules
Every \(R\)-module uniquely has the form

for \(P\) a rank 1 projective module, \(\mathfrak{m}_{i}\) maximal ideals, \(a_{i}>0\) integers.

One thing this is good for:
Theorem
Matroids over a Dedekind domain have duals.
Construction: Gale duality, more or less.

\section*{Structure of matroids over a Dedekind domain}

You can do base changes (e.g. localization) on matroids over rings:
\[
\{\text { matroids over } R\} \quad \longrightarrow \otimes_{R} S \quad\{\text { matroids over } S\}
\]

\section*{Strategy}

To understand matroids over a Dedekind domain \(R\) :
1. What can their localizations be like?
2. When does a family of localizations come from a global matroid?

The only interesting obstruction to step 2. is controlled by \(\operatorname{Pic}(R)\)
(Thus no problems over \(\mathbb{Z}\).)

\section*{Structure of matroids over a Dedekind domain}

You can do base changes (e.g. localization) on matroids over rings:
\[
\{\text { matroids over } R\} \quad-\otimes_{R} S \quad\{\text { matroids over } S\}
\]

\section*{Strategy}

To understand matroids over a Dedekind domain \(R\) :
1. What can their localizations be like?
2. When does a family of localizations come from a global matroid?

The only interesting obstruction to step 2. is controlled by \(\operatorname{Pic}(R)\).
(Thus no problems over \(\mathbb{Z}\).)

\section*{TFAIB:}
finitely generated modules over a DVR partitions allowing infinite parts nonincreasing sequences in \(\mathbb{N}\)

Example
\(N_{\lambda}=R \oplus R / \mathfrak{m}^{3} \oplus R / \mathfrak{m}\)
\(\lambda=\Pi\) ПП工 \(\cdots\)
\(d\left(N_{\lambda}\right)=3,2,2,1,1,1,1, \ldots\)

\section*{Theorem (Hall, ...)}

If \(\lambda, \mu, \nu\) have finite parts, the number of exact sequences
\[
0 \rightarrow N_{\lambda} \rightarrow N_{v} \rightarrow N_{\mu} \rightarrow 0
\]
up to isomorphism is the Littlewood-Richardson coefficient \(c_{\lambda \mu}^{v}\).

Cyclic kernel \(\Longrightarrow\) Pieri rule.

If \(N\) is an \(R\)-module, let \(d_{n}(N)=\#\) boxes in column \(n\), \((n\) may be \(\infty) \quad d_{\leq n}(N)=\#\) boxes in or left of column \(n\).

Theorem
\(M\) is a 1-element matroid over \(R \Longleftrightarrow d_{n}(M(1))-d_{n}(M(\emptyset)) \in\{0,1\}\).
\(M\) is a 2-element matroid over \(R \Longleftrightarrow\) further, \(d_{\leq n}\) is supermodular:
\(M\) is a 3-element matroid over \(R \Longrightarrow\) the minimum among

If \(N\) is an \(R\)-module, let \(d_{n}(N)=\#\) boxes in column \(n\), ( \(n\) may be \(\infty\) ) \(d_{\leq n}(N)=\#\) boxes in or left of column \(n\).

\section*{Theorem}
\(M\) is a 1-element matroid over \(R \Longleftrightarrow d_{n}(M(1))-d_{n}(M(\emptyset)) \in\{0,1\}\).

\section*{Theorem}
\(M\) is a 2-element matroid over \(R \Longleftrightarrow\) further, \(d_{\leq n}\) is supermodular:
\[
d_{\leq n}(M(\emptyset))+d_{\leq n}(M(12)) \geq d_{\leq n}(M(1))+d_{\leq n}(M(2))
\]
and equality is attained if \(d_{n}(M(1)) \neq d_{n}(M(2))\).
\(M\) is a 3-element matroid over \(R \Longrightarrow\) the minimum among

If \(N\) is an \(R\)-module, let \(d_{n}(N)=\#\) boxes in column \(n\), ( \(n\) may be \(\infty\) ) \(d_{\leq n}(N)=\#\) boxes in or left of column \(n\).

\section*{Theorem}
\(M\) is a 1-element matroid over \(R \Longleftrightarrow d_{n}(M(1))-d_{n}(M(\emptyset)) \in\{0,1\}\).

\section*{Theorem}
\(M\) is a 2-element matroid over \(R \Longleftrightarrow\) further, \(d_{\leq n}\) is supermodular:
\[
d_{\leq n}(M(\emptyset))+d_{\leq n}(M(12)) \geq d_{\leq n}(M(1))+d_{\leq n}(M(2))
\]
and equality is attained if \(d_{n}(M(1)) \neq d_{n}(M(2))\).

\section*{Theorem}
\(M\) is a 3-element matroid over \(R \Longrightarrow\) the minimum among
\[
\begin{aligned}
& d_{\leq n}(M(1))+d_{\leq n}(M(23)), \quad d_{\leq n}(M(2))+d_{\leq n}(M(13)) \\
& \\
& d_{\leq n}(M(3))+d_{\leq n}(M(12)) \quad \text { is attained twice. }
\end{aligned}
\]

\section*{The tropics}

The last theorem says that, if \(p_{A}:=d_{\leq n}(M(A))\), the Plücker relation
\[
p_{A b} p_{A c d}-p_{A c} p_{A b d}+p_{A d} p_{A b c}=0
\]
for the full flag variety vanishes tropically.

\section*{Conjecture}

The vector of \(d_{\leq n}(M(A))\) for all \(A\) defines a point on the tropical full flag variety*.

Theorem
The vector of \(d_{\leq n}(M(A))\) defines a point on each tropical Grassmannian*.
Equivalently, \(d_{\leq n}(M(A))\) is a valuated matroid.
* Tropical experts: I really mean Dressians.

\section*{The Tutte-Grothendieck ring}

The Tutte-Grothendieck group has generators \(\left\{T_{M}: M\right.\) a matroid \(\}\) and relations
\[
T_{M}=T_{M \backslash i}+T_{M / i} .
\]

In fact it's a ring, with \(T_{M} T_{M^{\prime}}=T_{M \oplus M^{\prime}}\).
\(T_{M}\) is the Tutte polynomial of \(M\).

Theorem (Crapo, Brylawski)
The Tutte-Grothendieck ring is \(\mathbb{Z}[x-1, y-1]\), with
\[
T_{M}=\sum_{A \subseteq E}(x-1)^{\text {corank }_{M}(A)}(y-1)^{\text {corank }_{M^{*}}(E \backslash A)}
\]

Let \(S\) be the monoid ring of fin. gen. \(R\)-modules (up to \(\cong\) ) under direct sum.

\section*{Theorem}

The Tutte-Grothendieck ring of matroids over \(R\) is essentially \(S \otimes S\), with
\[
\text { class of } M=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}
\]

Why "essentially"? \(M(A)\) and \(M^{*}(E \backslash A)\) must have the same torsion part.

One specialization: Brändén-Moci's Tutte quasipolynomial.

\section*{Looking ahead}

Are matroids over rings relevant to
- Chmutov's "arithmetic flow quasipolynomial" of simplicial complexes (over \(\mathbb{Z} \oplus \mathbb{Z}\) )?
- point configurations in type \(A\) Bruhat-Tits buildings (over a DVR)?

\section*{Looking ahead}

Are matroids over rings relevant to
- Chmutov's "arithmetic flow quasipolynomial" of simplicial complexes (over \(\mathbb{Z} \oplus \mathbb{Z}\) )?
- point configurations in type \(A\) Bruhat-Tits buildings (over a DVR)?

Thank you!

\section*{Why Dedekind domains?}

Regularity makes the projective modules and K-theory well-behaved.
One-dimensionality makes our maps essentially unique:

\section*{Fact}

If \(R\) is a Dedekind domain, then given two \(R\)-modules \(M, N\), all cyclic kernels of surjections \(M \rightarrow N\) are isomorphic.

That is, the Pieri rule is coefficient-free.

\section*{Counterexample in dimension 2}

Two surjections between two \(\mathbf{k}[x, y]\)-modules with nonisomorphic cyclic kernels:
```

