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Problem

Learning a tensor from a set of linear measurements

Main example: Tensor completion

I Video denoising/completion

I Context-aware recommendation

I Multisensor data analysis

I Entities-relationships learning

I ...
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Multilinear multitask learning

Tasks are associated with multiple indices, e.g. predict a rating
given to different aspects of a restaurant by different critics

Tasks’ regression vectors are “vertical” fibers of the tensor, e.g.
( , ‘food’)
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0-Shot Transfer Learning

Learning tasks for which no training instances are provided
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Setting

We consider a supervised learning setting in which we wish to learn
a tensor from a set of measurements

y = I (W) + ε

where I : Rd1×···dN → Rm a linear (sampling) operator, e.g. a
subset of the tensor entries

The number of parameters explodes with the order of the tensor,
so regularization is key:

minimize
W

E (W) + λR(W)

for example E (W) = ‖y − I (W)‖2
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Matrix case

The matrix case has been thoroughly studied, particularly focusing
on spectral regularizers which encourage low rank matrices

I low rank matrix completion

I multitask feature learning

Different notions of rank of a tensor! (some computationally
intractable). Many are reviewed in [Kolda and Bader, 2009]

Which ones are simple and effective?
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Objectives

We want some kind of guarantees

I statistical: bounds on the generalization / out-of-sample error

I optimization: convergence, rates

I function approximation

We discuss two approaches based on:

I B. Romera-Paredes, H. Aung, N. Bianchi-Berthouze, M. Pontil. Multilinear
multitask learning. 30th International Conference on Machine Learning, 2013

I B. Romera-Paredes & M. Pontil. A new convex relaxation for tensor
completion. Advances in Neural Information Processing Systems 26, 2013
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Function approximation

Learn function parametrized by a tensor from a sample

Example: x = (x1, x2, x3) ∈ V1 × V2 × V3, three vector spaces

f (x) = 〈W, φ1(x1)⊗ φ2(x2)⊗ φ3(x3)〉, W ∈ Rd1×d2×d3

φi : Vi → Rdi feature maps

min
W

m∑
i=1

Loss(yi , f (xi )) + γΩ(W)

Dual problem using kernel methods

K (x, t) = K1(x1, t1)K2(x2, t2)K3(x3, t3)

Matrix case: [Abernethy, Bach, Evgeniou, and Vert, JMLR 2009]

Tensor case: [Signoretto, De Lathauwer, Suykens, Preprint 2013]
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Basic operations

Tensor W ∈ Rd1×···×dN , with entries Wi1,...,iN

I Mode-n fiber is a vector in Rdn formed by the elements of a
tensor obtained by fixing all indices but the n-th one, e.g. in
the above example Wi1,i2,: ∈ Rd3 is the (i1, i2)-th regression
vector
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Basic operations (cont.)

Matricization is the process of rearranging the tensor into a matrix

I Mode-n matricization W(n) ∈ Rdn×Jn , where Jn =
∏

k 6=n dk ,
is the matrix, the column of which are the mode-n fibers of W

W(1) W(3)
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Tucker rank

I TR(W) = (rank(W(1)), . . . , rank(W(n)))

I A natural regularizer associated to this is the sum of the ranks
of the matricizations:

R(W) :=
∑
n

rank(W(n))
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Tucker decomposition

W = G ×1 A
(1) × · · · ×N A(N)

meaning that

Wi1,...,iN =

K1∑
j1=1

· · ·
KN∑
jN=1

Gj1,...,jNA
(1)
i1,j1
· · ·A(N)

iN ,jN

Kn ≤ dn (typically much smaller)

I A(n) ∈ Rdn×Kn , n ∈ {1, ...,N} are the factor matrices

I G ∈ RK1×···×KN is called the core tensor and models the
interaction between factors

I By construction rank(W(n)) ≤ Kn
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Nonconvex approach

The Tucker decomposition is invariant under multiplication and
division of different factors by the same scalar. With the aim of
avoiding this issue and reducing overfitting, we add Frobenius
norm regularization terms to the components

minimize
G,A(1),...,A(N)

E (G ×1 A
(1) · · · ×N A(N)) + α

[
‖G‖2

F +
N∑

n=1

‖A(n)‖2
F

]

where α is a regularization parameter

We solve this problem by alternate minimization

Each step is detailed in the paper (also code available)
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Convex approach

An alternative approach is to relax the combinatorial problem

argmin
W

E (W) + γ
N∑

n=1
rank

(
W(n)

)
The trace norm is a widely used convex surrogate for the rank.
Therefore, we can consider the following convex relaxation:

argmin
W

E (W) + γ
N∑

n=1

∥∥W(n)

∥∥
Tr

Tensor completion: [Liu et al, 2009, Gandy et al, 2011, Signoretto et al, 2012]
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Discussion

In the Tucker decomposition the factors are explicit, hence we can
add a new factor without relearning the full tensor

Space complexity: O
(∑N

n=1 dnKn +
∏N

n=1 Kn

)
which can be much

smaller than that of the convex approach, particularly if Kn � dn

Main drawback: no guarantee to find a local minimum
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Alternating Direction Method of Multipliers (ADMM)

I The regularizer
N∑

n=1

∥∥W(n)

∥∥
Tr

is composite

I ADMM decouples the problem

I Introduce auxiliary tensors Bn, ∀n ∈ {1, ...,N} accounting for
each term in the sum, adding the constraints Bn =W

I Optimize the resultant Lagrangian w.r.t. each Bn only involves
computing the proximal operator of the trace norm:

prox‖·‖Tr
(V ) = argmin

X∈Rd×d

1
2 ‖X − V ‖2

F + ‖X‖Tr
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ADMM
Want to minimize

1

γ
E (W) +

N∑
n=1

Ψ
(
W(n)

)

Decouple the regularization term

min
W,B1,...,BN

{
1

γ
E (W) +

N∑
n=1

Ψ
(
Bn(n)

)
: Bn =W, n = 1,...,N

}

Augmented Lagrangian:

L (W,B, C) =
1

γ
E (W)+

N∑
n=1

[
Ψ
(
Bn(n)

)
− 〈Cn,W −Bn〉+

β

2
‖W − Bn‖2

2

]
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ADMM (cont.)

L (W,B, C) =
1

γ
E (W)+

N∑
n=1

[
Ψ
(

(Bn(n))
)
− 〈Cn,W −Bn〉+

β

2
‖W − Bn‖2

2

]

Updating equations:

W [i+1] ← argmin
W

L
(
W,B[i ], C[i ]

)
B[i+1]
n ← argmin

Bn
L
(
W [i+1],B, C[i ]

)
C[i+1]
n ← C[i ]

n −
(
βW [i+1] − B[i+1]

n

)

I 2nd step involves the computation of proximity operator of Ψ

Convergence properties of ADMM are detailed e.g. in [Eckstein and

Bertsekas, Mathematical Programming 1992]
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Proximity Operator

Let B = Bn(n) and where A = (W − 1
βCn)(n). Rewrite 2nd step as:

B̂ = prox 1
β

Ψ(A) := argmin
B

{
1

2
‖B − A‖2

2 +
1

β
Ψ(B)

}
Case of interest: Ψ(B) = ψ(σ(B))

By von Neumann’s matrix inequality:

prox 1
β

Ψ (A) = UAdiag
(
prox 1

β
ψ (σA)

)
V>A
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Rethinking the convex approach

Convex envelope of a function f on a set S is the largest convex
function f ∗∗ majorized by f at every point in S

E.g: cardinality of a vector:

I f (v) = card(v)

I S = {v : ||v ||∞ ≤ α}
I f ∗∗(v) = ||v ||1/α
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In practice α is unknown and tuned by cross validation
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Rethinking the convex approach

The same reasoning applies to matrices

I ‖W ‖Tr /α is the convex envelope of rank(W) on the spectral
unit ball of radius α [Fazel, Hindi, & Boyd, 2001]

I By using the regularizer
N∑

n=1

∥∥W(n)

∥∥
Tr

we implicitly assume

the same α for the different matricizations

I Difficulty with tensors: ‖W(n)‖∞ varies with n!
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Rethinking the convex approach

I
∥∥W(n)

∥∥
∞ varies with n

I Let us consider W ∈ R2×2×2×2. Then:

0,0 1,0

0,1

Vectors of singular values of
each matricization

Smallest `∞ ball containing
each of the vectors

Smallest `∞ ball containing
all vectors
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Rethinking the convex approach

I We are interested in convex functions on matrices which are
invariant to the matricization operation

I The Frobenius norm is very appealing:

I It is also a spectral function

I Therefore, we consider the set S = {W : ‖W ‖F ≤ α}

I Calculating the convex envelope of the rank on S can be
reduced to calculating the convex envelope of card (v) on the
set {v : ‖v‖2 ≤ α}, where v is the vector of singular values
of W (follows by von Neumann’s matrix inequality)
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Convex envelope of the cardinality of a vector in the `2 ball

0,0 1,0

0,1

Vectors of singular values of
each matricization

Smallest `∞ ball containing
each of the vectors

Smallest `∞ ball containing
all vectors

Smallest `2 ball containing
all vectors
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Convex envelope of the cardinality of a vector in the `2 ball

I Aim: derive convex envelope of fα (x) = card (x) on the set
{x ∈ Rd | ‖x‖2 ≤ α}

I The conjugate of fα, ∀s ∈ Rd , is

f ∗α (s) = sup
x∈B2

x>s − card (x) = max
r∈{0,...,d}

{α ‖s1:r‖2 − r}

I Biconjugate of fα:

f ∗∗α (v) = sup
s∈Rd

s>v − f ∗α (s) , ‖v‖2 ≤ α

We do now know how to compute f ∗∗. We can compute it
and its proximal operator by projected sub-gradient descent
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Quality of Relaxation (cont.)
Lemma. If ‖x‖2 = α then ωα (x) = card (x).

Let

Ωα(W) =
N∑

n=1

ωα(σ(W(n))), ‖W‖tr =
N∑

n=1

‖σ(W(n))‖1

Implication:
Theorem. If W satisfies (a,b,c) below then Ωpmin(W) > ‖W‖tr

a) ‖W(n)‖∞ ≤ 1 ∀n
b) ‖W‖2 =

√
pmin

c) min
n

rank(W(n)) < max
n

rank(W(n))

On the other hand, ω1 is the convex envelope of card on `2 unit
ball, so:

Ω1(W) ≥ ‖W‖tr, ∀ W : ‖W‖2 ≤ 1
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Experiments on tensor completion

Video compression
(160× 112× 32× 3 tensor)
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Exam score prediction
(139× 11× 3× 3× 2 tensor)
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Extensions and further work

I Latent tensor norm

I Tensor nuclear norm and an open problem

I Controlling the rank of all matricizations (quantum physics)

I Kernel methods

I Statistical analysis
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Latent tensor nuclear norm

Defined by the variational problem [Tomioka and Suzuki 2013, Wimalawarne

et al 2014]

‖W‖LNN = inf

{
m∑
j=1

‖σ(Vj)‖1

∣∣∣ m∑
j=1

M∗j Vj =W

}
.

where M∗j is the adjoint of the matricization operator

The associated unit ball is

conv{W | rank(W (n)) ≤ 1, ‖W (n)‖∞ ≤ 1, ∀n}
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Latent tensor nuclear norm

If we change the above to

conv{W | rank(W (n)) ≤ k , ‖W (n)‖p ≤ 1}

the induced norm becomes [Combettes et al 2016]

‖W‖LNN = inf

{
m∑
j=1

‖σ(Vj)‖p,k
∣∣∣ m∑

j=1

M∗j Vj =W

}

where ‖ · ‖p,k is the (p, k)-support norm [McDonald, Pontil, Stamos

2016]. Its unit ball is

conv{x ∈ Rd | card(x) ≤ k, ‖x‖p ≤ 1}

Ongoing experiments...
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Tensor nuclear norm

Defined by

‖W‖TNN,p = inf
{
‖λ‖p |

K∑
k=1

λku
(1)
k ⊗ · · · ⊗ u

(N)
k =W

}
where the infimum is over K ∈ N, λ = (λ1, . . . , λK ) ∈ RK and

vectors u
(n)
k ∈ Rdn such that ‖u(n)

r ‖ = 1, ∀n, k

Originally proposed and claimed to be a norm in [Lim & Comon, 2010],
however [Friedland & Lim, 2016] shows this is well defined and a norm
only when p = 1, but it is always zero if p > 0 disproving the claim
in the former paper
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Tensor nuclear norm

[Friedland & Lim, 2016] also shows that computing ‖W‖TNN is
NP-hard.
Assume for simplicity d1 = · · · = dN = d
Claim 1. We may restrict w.l.o.g. K ≤ dN−1

Claim 2. We can rewrite the norm as

‖W‖TNN = inf
{ K∑

k=1

N∏
n=1

‖v (n)
k ‖ :

K∑
k=1

λkv
(1)
k ⊗ · · · ⊗ v

(N)
k =W

}
where now the v

(n)
k ∈ Rd are not constrained to have unit norm
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Tensor nuclear norm

Claim 3. Let
ϕ(W) = E (W) + γ‖W‖TNN

and
h(V (1), . . . ,V (N)) = ϕ(V (1) ⊗ · · · ⊗ V (N))

If (V (1), . . . ,V (N)) is a local minima of h then

W = V (1) ⊗ · · · ⊗ V (N)

is a local minima of ϕ
True for N = 2 (easy to show)
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Controlling the rank of all matricizations

Let c ⊂ {1, . . . , } and W (i,̄i) be the matricization obtained by
taking the modes in c as rows and those in c̄ as columns

Fact: if
max

c⊂{1,...,N}
rank(W (c,c̄)) ≤ k

then W has a compact decomposition called
“matrix-product-state” in quantum physics [Vidal 2003]”

Wi1,...,in = trace(A1
i1 · · ·A

N
in )

where An
i are k × k matrices, so we can describe the tensor by

O(Nk2) parameters. However, with this method we do not have
control of maxn rank(W (n))

If N ≤ 6 we may still obtain a latent norm convex relaxation
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THANK YOU!
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