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In a nutshell

Tensor-based models of meaning aim to unify two orthogonal
semantic paradigms:

The type-logical compositional approach of formal semantics
The quantitative perspective of vector space models of
meaning

Useful in every NLP task: sentence similarity, paraphrase
detection, sentiment analysis, machine translation etc.

In this talk:

I provide an introduction to the field by presenting the mathe-
matical foundations, discussing important extensions and re-
cent work, and touching implementation issues and practical
applications.
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Computers and meaning

Computational linguistics is the scientific and engineering
discipline concerned with understanding written and
spoken language from a computational perspective.

—Stanford Encyclopedia of Philosophy1

1http://plato.stanford.edu
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The meaning of words

Distributional hypothesis

Words that occur in similar contexts have similar meanings
[Harris, 1958].

The functional interplay of philosophy and ? should, as a minimum, guarantee...
...and among works of dystopian ? fiction...

The rapid advance in ? today suggests...
...calculus, which are more popular in ? -oriented schools.

But because ? is based on mathematics...
...the value of opinions formed in ? as well as in the religions...

...if ? can discover the laws of human nature....
...is an art, not an exact ? .

...factors shaping the future of our civilization: ? and religion.
...certainty which every new discovery in ? either replaces or reshapes.

...if the new technology of computer ? is to grow significantly
He got a ? scholarship to Yale.

...frightened by the powers of destruction ? has given...
...but there is also specialization in ? and technology...
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Distributional models of meaning

A word is a vector of co-occurrence statistics with every other
word in a selected subset of the vocabulary:

milk

cute

dog

bank

money

12

8

5

0

1

cat

cat

dog

account

money

pet

Semantic relatedness is usually based on cosine similarity:

sim(−→v ,−→u ) = cos θ−→v ,−→u =
〈−→v · −→u 〉
‖−→v ‖‖−→u ‖
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Moving to phrases and sentences

We would like to generalize this idea to phrases and sentences

However, it’s not clear how

There are practical problems—there is not enough data:

But even if we had a very large corpus, what the context of a
sentence would be?

A solution:

For a sentence w1w2 . . .wn, find a function f such that:

−→s = f (−→w1,
−→w2, . . . ,

−→wn)
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Quantizing the grammar

Coecke, Sadrzadeh and Clark (2010):

Pregroup grammars are structurally homomorphic with the
category of finite-dimensional vector spaces and linear maps
(both share compact closure)

In abstract terms, there exists a structure-preserving passage
from grammar to meaning:

F : Grammar→ Meaning

The meaning of a sentence w1w2 . . .wn with grammatical
derivation α is defined as:

−−−−−−−→w1w2 . . .wn := F(α)(−→w1 ⊗−→w2 ⊗ . . .⊗−→wn)

D. Kartsaklis Tensor-based Models of Natural Language Semantics 9/46



Pregroup grammars

A pregroup grammar P(Σ,B) is a relation that assigns gram-
matical types from a pregroup algebra freely generated over
a set of atomic types B to words of a vocabulary Σ.

A pregroup algebra is a partially ordered monoid, where each
element p has a left and a right adjoint such that:

p · pr ≤ 1 ≤ pr · p pl · p ≤ 1 ≤ p · pl

Elements of the pregroup are basic (atomic) grammatical
types, e.g. B = {n, s}.
Atomic grammatical types can be combined to form types of
higher order (e.g. n · nl or nr · s · nl )

A sentence w1w2 . . .wn (with word wi to be of type ti ) is
grammatical whenever:

t1 · t2 · . . . · tn ≤ s
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Pregroup derivation: example

p · pr ≤ 1 ≤ pr · p pl · p ≤ 1 ≤ p · pl

S

NP

Adj

trembling

N

shadows

VP

V

play

N

hide-and-seek

trembling shadows play hide-and-seek

n nl n nr s nl n

n · nl · n · nr · s · nl · n ≤ n · 1 · nr · s · 1
= n · nr · s
≤ 1 · s
= s

D. Kartsaklis Tensor-based Models of Natural Language Semantics 11/46



Compact closed categories

A monoidal category (C,⊗, I ) is compact closed when every
object has a left and a right adjoint, for which the following
morphisms exist:

A⊗ Ar εr

−→ I
ηr

−→ Ar ⊗ A Al ⊗ A
εl

−→ I
ηl

−→ A⊗ Al

Pregroup grammars are CCCs, with ε and η maps
corresponding to the partial orders

FdVect, the category of finite-dimensional vector spaces and
linear maps, is a also a (symmetric) CCC:

ε maps correspond to inner product
η maps to identity maps and multiples of those
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A functor from syntax to semantics

We define a strongly monoidal functor F such that:

F : P(Σ,B)→ FdVect

F(p) = P ∀p ∈ B
F(1) = R

F(p · q) = F(p)⊗F(q)

F(pr ) = F(pl ) = F(p)

F(p ≤ q) = F(p)→ F(q)

F(εr ) = F(εl ) = inner product in FdVect

F(ηr ) = F(ηl ) = identity maps in FdVect

[Kartsaklis, Sadrzadeh, Pulman and Coecke, 2016]
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A multi-linear model

The grammatical type of a word defines the vector space
in which the word lives:

Nouns are vectors in N;

adjectives are linear maps N → N, i.e elements in
N ⊗ N;

intransitive verbs are linear maps N → S , i.e. elements
in N ⊗ S ;

transitive verbs are bi-linear maps N ⊗ N → S , i.e.
elements of N ⊗ S ⊗ N;

The composition operation is tensor contraction, i.e.
elimination of matching dimensions by application of inner
product.
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Categorical composition: example

S

NP

Adj

trembling

N

shadows

VP

V

play

N

hide-and-seek

trembling shadows play hide-and-seek

n nl n nr s nl n

Type reduction morphism:

(εr
n · 1s) ◦ (1n · εl

n · 1nr ·s · εl
n) : n · nl · n · nr · s · nl · n→ s

F
[
(εr

n · 1s ) ◦ (1n · εl
n · 1nr ·s · εl

n)
] (

trembling ⊗
−−−−−→
shadows ⊗ play ⊗

−−−−−−−−−→
hide-and-seek

)
=

(εN ⊗ 1S ) ◦ (1N ⊗ εN ⊗ 1N⊗S ⊗ εN )
(

trembling ⊗
−−−−−→
shadows ⊗ play ⊗

−−−−−−−−−→
hide-and-seek

)
=

trembling ×
−−−−−→
shadows × play ×

−−−−−−−−−→
hide-and-seek

−−−−−→
shadows,

−−−−−−−−−→
hide-and-seek ∈ N trembling ∈ N ⊗ N play ∈ N ⊗ S ⊗ N
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A graphical language for monoidal categories

A

f A

V V W V W Z
B

morphisms tensors

Al A
Al A Ar = A

A Ar

ε-map η-map (εl
A ⊗ 1Ar ) ◦ (1Al ⊗ ηr

A) = 1A

Vectors and tensors are states: −→v : I → V , w : I → V ⊗ V
and so on.
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Graphical language: example

trembling shadows play hide-and-seek

N VP

Adj N V N

S

F( ) = N N l N Nr S N l N

F(α)(trembling ⊗
−−−−−→
shadows ⊗ play ⊗

−−−−−−−−−→
hide-and-seek)

trembling shadows play hide-and-seek

N N l N Nr S N l N

⊗
i

−→wi 7→

F(α) 7→
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Extensional approach

Grefenstette and Sadrzadeh (2011); Kartsaklis and Sadrzadeh
(2016):

A relational word is defined as the set of its arguments:

[[red ]] = {car , door , dress, ink, · · · }

To give this linear-algebraically:

adj =
∑

i

−−−→nouni ⊗−−−→nouni

When composing the adjective with a new noun n′, we get:

adj ×−→n ′ =
∑

i

〈−−−→nouni ,
−→n ′〉−−−→nouni
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Statistical approach

Baroni and Zamparelli (2010):

Create holistic distributional vectors for whole compounds (as
if they were words) and use them to train a linear regression
model.

red

× car = red car

× door = red door

× dress = red dress

× ink = red ink

ˆadj = arg min
adj

[
1

2m

∑
i

(adj ×−−−→nouni −
−−−−−−→
adj nouni )

2

]
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Decomposition of tensors

3rd-order tensors for transitive verbs (and 4th-order for
ditransitive verbs) pose a challenge

We can reduce the number of parameters by applying
canonical polyadic decomposition:

verb =
R∑

r=1

Pr ⊗Qr ⊗ Rr

P ∈ RR×S , Q ∈ RR×N , R ∈ RR×N

Keep R sufficiently small with regard to S and N

Learn P, Q and R by multi-linear regression

−→svo = f (−→s ,−→o ) := PT(Q−→s � R−→o )

L =
1

2m

m∑
i=1

||f (−→si ,
−→oi )−−→ti ||2

[Fried, Polajnar, Clark (2015)]

D. Kartsaklis Tensor-based Models of Natural Language Semantics 21/46



Outline

1 Distributional Semantics

2 Categorical Compositional Distributional Semantics

3 Creating Relational Tensors

4 Dealing with Functional Words

5 A Quantum Perspective

6 Conclusions and Future Work

D. Kartsaklis Tensor-based Models of Natural Language Semantics 22/46



Functional words

Certain classes of words, such as determiners, relative
pronouns, prepositions, or coordinators occur in almost every
possible context.

Thus, they are considered semantically vacuous from a
distributional perspective and most often they are simply
ignored.

In the tensor-based setting, these special words can be mod-
elled by exploiting additional mathematical structures, such
as Frobenius algebras and bialgebras.
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Frobenius algebras in FdVect

Given a symmetric CCC (C,⊗, I ), an object X ∈ C has a
Frobenius structure on it if there exist morphisms:

∆ : X → X ⊗ X , ι : X → I and µ : X ⊗ X → X , ζ : I → X

conforming to the Frobenius condition:

(µ⊗ 1X ) ◦ (1X ⊗∆) = ∆ ◦ µ = (1X ⊗ µ) ◦ (∆⊗ 1X )

In FdVect, any vector space V with a fixed basis {−→vi }i has a
commutative special Frobenius algebra over it [Coecke and

Pavlovic, 2006]:

∆ : −→vi 7→ −→vi ⊗−→vi µ : −→vi ⊗−→vi 7→ −→vi

It can be seen as copying and merging of the basis.
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Graphical representation

Frobenius maps:

(∆, ι) = (µ, ζ) =

Frobenius condition:

= =
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Merging (1/2)

In FdVect, the merging µ-map becomes element-wise vector
multiplication:

−→v1
−→v2

µ(−→v1 ⊗−→v2 ) = −→v1 �−→v2 = V V

An alternative form of composition between operands of the
same order; both of them contribute equally to the final result

Different from standard ε-composition, which has a
transformational effect. An intransitive verb, for example, is a
map N → S that transforms a noun into a sentence:

John walks

N N r S
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Merging (2/2)

ε-composition µ-composition
(transformation) (merging)

7→ =

Applications of merging in linguistics:

Noun modification by relative clauses [Sadrzadeh et al., MoL 2013]

Modelling intonation at sentence level [Kartsaklis and Sadrzadeh,

MoL 2015]

Modelling non-compositional compounds (e.g. ‘pet-fish’)
[Coecke and Lewis, QI 2015]

Modelling coordination [Kartsaklis (2016)]
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Copying

In FdVect, the ∆-map converts vectors to diagonal matrices

It can be seen as duplication of information; a single wire is
split in two; i.e. a maximally entangled state

A form of type-raising (converts an atomic type to a function)
[Kartsaklis et al., COLING 2012]:

7→

A means of syntactic movement; the same word can efficiently
interact with different parts of the sentence [Sadrzadeh et al.,

MoL 2013]
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Coordination and Frobenius maps

Coordination

The grammatical connection of two or more words, phrases,
or clauses to give them equal emphasis and importance. The
connected elements, or conjuncts, behave as one.

Merging and copying are the key processes of coordination:

context c1 conj c2 7→ [context c1] conj [context c2]

(1) Mary studies [philosophy] and [history] |=
[Mary studies philosophy] and [Mary studies history]

(2) John [sleeps] and [snores] |=
[John sleeps] and [John snores]
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Coordinating atomic types

Coordination morphism:

conjX : I
ηr

X⊗η
l
X−−−−−→ X r ⊗ X ⊗ X ⊗ X l

1X r⊗µX⊗1
X l−−−−−−−−−→ X r ⊗ X ⊗ X l

and
apples oranges

apples oranges

N N7→N Nr N N l N

oranges

N

and

NNr

apples

N l N :=

(εr
N ⊗1N ⊗ εl

N )◦ (
−−−→
apples⊗ conjN ⊗

−−−−→oranges) = µ(
−−−→
apples⊗−−−−→oranges) =

−−−→
apples�−−−−→oranges

and

football
men watch football women knit

men watch women knit

7→N Nr S N l N Sr S S l N Nr S N Nr S N l N N Nr S

(−−→menT × watch ×
−−−−−→
football)� (−−−−→womenT × knit)
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Coordinating compound types

Lifting the maps to compound objects gives:

(U ⊗ V )r (U ⊗ V ) V r Ur U V

7→ 7→

V lV U lU(U ⊗ V ) (U ⊗ V )l

(U ⊗ V ) (U ⊗ V )

(U ⊗ V )

U V U V

7→

U V

For the case of a verb phrase, we get:

NrSr S lS NNrr(Nr ⊗ S)r (Nr ⊗ S) (Nr ⊗ S)l

7→
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Coordinating verb phrases

and

John sleeps snores

7→N Nr S Nr SSr NNrr Nr S S l

SNrN

John

Nr

S

S

sleeps and snores

Nr

1 The subject of the coordinate structure (‘John’) is copied at the N r

input of the coordinator;

2 the first branch interacts with verb ‘sleeps’ and the second one with
verb ‘snores’; and

3 the S wires of the two verbs that carry the individual results are
merged together with µ-composition.

−−→
JohnT × (sleep � snore)

(� here denotes the Hadamard product between matrices)
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Word vectors as quantum states

We take words to be “quantum systems”, and word vectors
specific states of these systems:

|w〉 = c1|k1〉+ c2|k2〉+ . . .+ cn|kn〉

Each element of the ONB {|ki 〉}i is essentially an atomic
symbol:

|cat〉 = 12|milk ′〉+ 8|cute ′〉+ . . .+ 0|bank ′〉

In other words, a word vector is a probability distribution over
atomic symbols

|w〉 is a pure state: when word w is seen alone, it is like
co-occurring with all the basis words with strengths denoted
by the various coefficients.
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Lexical ambiguity

We distinguish between two types of lexical ambiguity:

In cases of homonymy (organ, bank, vessel etc.), due to some
historical accident the same word is used to describe two (or
more) completely unrelated concepts.

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

donor transplant
liver

transplantation

kidney

lung

organ (medicine)

accompaniment

bass

orchestra

hymn

recital

violin

concert

organ (music)

organ

Polysemy relates to subtle deviations between the different
senses of the same word.
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Encoding homonymy with mixed states

Ideally, every disjoint meaning of a homonymous word must
be represented by a distinct pure state:

|bankfin〉 = a1|k1〉+ a2|k2〉+ . . .+ an|kn〉
|bankriv 〉 = b1|k1〉+ b2|k2〉+ . . .+ bn|kn〉

{ai}i 6= {bi}i , since the financial sense and the river sense are
expected to be seen in drastically different contexts

So we have two distinct states describing the same system

We cannot be certain under which state our system may be
found – we only know that the former state is more probable
than the latter

In other words, the system is better described by a
probabilistic mixture of pure states, i.e. a mixed state.

D. Kartsaklis Tensor-based Models of Natural Language Semantics 36/46



Density operators

Mathematically, a mixed state is represented by a density
operator:

ρ(w) =
∑

i

pi |si 〉〈si |

For example:

ρ(bank) = 0.80|bankfin〉〈bankfin|+ 0.20|bankriv 〉〈bankriv |

A density operator is a probability distribution over vectors.

Properties of a density operator ρ

Positive semi-definite: 〈v |ρ|v〉 ≥ 0 ∀v ∈ H
Of trace one: Tr(ρ) = 1

Self-adjoint: ρ = ρ†
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Complete positivity: The CPM construction

In order to apply the new formulation on the categorical model of
Coecke et al. we need:

to replace word vectors with density operators

to replace linear maps with completely positive linear maps,
i.e. maps that send positive operators to positive operators
while respecting the monoidal structure.

Selinger (2007):

Any dagger compact closed category is associated with a cat-
egory in which the objects are the objects of the original cat-
egory, but the maps are completely positive maps.
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From vectors to density operators

The passage from a grammar to distributional meaning is
defined according to the following composition:

P(Σ,B)
F−→ FdHilb

L−→ CPM(FdHilb)

The meaning of a sentence w1w2 . . .wn with grammatical
derivation α becomes:

L(F(α)) (ρ(w1)⊗CPM ρ(w2)⊗CPM . . .⊗CPM ρ(wn))

Composition takes this form:

Subject-intransitive verb: ρIN = TrN (ρ(v) ◦ (ρ(s)⊗ 1S ))

Adjective-noun: ρAN = TrN (ρ(adj) ◦ (1N ⊗ ρ(n)))

Subj-trans. verb-Obj: ρTS = TrN,N (ρ(v) ◦ (ρ(s)⊗ 1S ⊗ ρ(o)))

[Kartsaklis DPhil thesis (2015)]

[Piedeleu, Kartsaklis, Coecke, Sadrzadeh (2015)]
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Entropy as degree of ambiguity

Von Neumann entropy:

For a d.m. ρ with eigen-decomposition
∑

i ei |ni 〉〈ni |:

S(ρ) = −Tr(ρ ln ρ) = −
∑

i

ei ln ei

Von Neumann entropy shows how ambiguity evolves from
words to compounds

Disambiguation = purification: Entropy of ‘vessel’ is 0.25,
but entropy of ‘vessel that sails’ is 0.01 (i.e. almost a pure
state).
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Conclusions and future work

Main points:

Tensor-based models of meaning provide a linguistically
motivated procedure for computing the meaning of phrases
and sentences.

Words of relational nature, such as verbs and adjectives,
become (multi-)linear maps acting on noun vectors.

A test-bed for studying compositional aspects of language at
a deeper level.

Future work:

The application of a logic remains an open problem.

The density-operator formulation opens various new
possibilities to be explored in the future.

A large-scale evaluation on unconstrained text is remain to be
done.
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you for

?

N S r S

N r S

N lS

Thank

N l N

listening

N

any questions
...and

S S lS r
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