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Symmetric Tensors
T is an n × ...× n︸ ︷︷ ︸

d times

symmetric tensor with elements in R if

Ti1i2...id = Tiσ1
iσ2
...iσd

for all permutations σ of {1, 2, ..., d}. Notation: T ∈ Sd(Rn).

Example (d = 2)

T =


T11 T12 · · · T1n

T12 T22 · · · T2n

...
T1n T2n · · · Tnn


Example (n = 3, d = 3)

T =

T111 T112 T113

T112 T122 T123

T113 T123 T133


︸ ︷︷ ︸

T1··

,

T112 T122 T123

T122 T222 T223

T123 T223 T233


︸ ︷︷ ︸

T2··

,

T113 T123 T133

T123 T223 T233

T133 T233 T333


︸ ︷︷ ︸

T3··

.



Symmetric Tensors and Polynomials

An equivalent way of representing a symmetric tensor T ∈ Sd(Rn)
is by a homogeneous polynomial fT ∈ R[x1, ..., xn] of degree d .

Example (d = 2)

In the case of matrices,

fT (x1, ..., xn) = xTTx

=
(
x1 x2 · · · xn

)

T11 T12 · · · T1n

T12 T13 · · · T2n
...

T1n T2n · · · Tnn



x1

x2
...
xn


=
∑
i ,j

Tijxixj .



Symmetric Tensors and Polynomials
For general T ∈ Sd(Rn),

fT (x1, ..., xn) = T · xd :=
n∑

i1,...,id=1

Ti1...id xi1 ...xid

=
∑

j1+···+jn=d

(
d

j1, . . . , jn

)
T1 . . . 1︸ ︷︷ ︸

j1

... n . . . n︸ ︷︷ ︸
jn

x j11 . . . x
jn
n

=
∑

j1+···+jn=d

uj1,...,jnx
j1
1 . . . x

jn
n .

Example (n = 3, d = 2)
For 3× 3 matrices,

fT (x1, x2, x3) =
3∑

i1,i2=1

Ti1i2xi1xi2

= T11︸︷︷︸
u2,0,0

x2
1 + 2T12︸︷︷︸

u1,1,0

x1x2 + 2T13︸︷︷︸
u1,0,1

x1x3 + T22︸︷︷︸
u0,2,0

x2
2 + 2T23︸︷︷︸

u0,1,1

x2x3 + T33︸︷︷︸
u0,0,2

x2
3 .
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Symmetric Tensor Decomposition

A symmetric decomposition of a symmetric tensor T ∈ Sd(Rn) is

T =
r∑

i=1

λiv
⊗d
i .

If fT ∈ R[x1, ..., xn] is the corresponding polynomial, then

fT (x1, ..., xn) =
r∑

i=1

λi (vi · x)d =
r∑

i=1

λi (vi1x1 + vi2x2 + · · ·+ vinxn)d .

The smallest r for which such a decomposition exists is the symmetric
rank of T .



Orthogonal Tensor Decomposition

An orthogonal symmetric decomposition of a symmetric tensor
T ∈ Sd(Rn) is a decomposition

T =
r∑

i=1

λiv
⊗d
i with corresponding fT =

r∑
i=1

λi (vi · x)d

such that the vectors v1, ..., vr ∈ Rn are orthonormal. In particular,
r ≤ n.

Definition
A tensor T ∈ Sd(Rn) is orthogonally decomposable, or odeco, if it has an
orthogonal decomposition.



Examples

1. All symmetric matrices are odeco: by the spectral theorem

T = V TΛV =

 | · · · |
v1 · · · vn
| · · · |


λ1

. . .

λn


− v1 −

...
− vn −


=

n∑
i=1

λiviv
T
i =

n∑
i=1

λiv
⊗2
i ,

where v1, ..., vn is an orthonormal basis of eigenvectors.

2. The Fermat polynomial: If vi = ei , for i = 1, ..., n, then

fT (x1, ..., xn) = xd1 + xd2 + · · ·+ xdn ,

T = e⊗d1 + e⊗d2 + · · ·+ e⊗dn .



An Application: Exchangeable Single Topic Models
h

x1
x2

xd

Pick a topic h ∈ {1, 2, ..., k} with distribution (w1, ...,wk) ∈ ∆k−1. Given
h = j , x1, ..., xd are i .i .d random variables taking values in {1, 2, ..., n}
with distribution µj = (µj1, ..., µjn) ∈ ∆n−1.

Then, the joint distribution of x1, ..., xd is an n × n × · · · × n︸ ︷︷ ︸
d times

symmetric

tensor T ∈ Sd(Rn) whose entries sum to 1. Moreover,

T =
k∑

j=1

P(h = j)P(x1|h = j)⊗ · · · ⊗ P(xd |h = j) =
k∑

j=1

wjµ
⊗d
j .

Given T , to recover the parameters w , µ, use a transformation T 7→ Tod

and decompose Tod [Anandkumar et al.].
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Eigenvectors of Tensors
Consider a symmetric tensor T ∈ Sd(Rn).

Example (d = 2)

T is an n × n matrix and w ∈ Cn is an eigenvector if

Tw =


...∑n

j=1 Ti ,jwj
...

 = λw .

Example (d = 3)

T is an n × n × n tensor and w ∈ Cn is an eigenvector if

Tw2 :=


...∑n

j ,k=1 Ti ,j ,kwjwk
...

 = λw .



Eigenvectors of Symmetric Tensors

Definition

I Given a symmetric tensor T ∈ Sd(Rn), an eigenvector of T with
eigenvalue λ is a vector w ∈ Cn such that

Twd−1 :=


...∑n

i2,...,id=1 Ti,i2,...,idwi2 ...wid
...

 = λw .

Two eigenvector-eigenvalue pairs (w , λ) and (w ′, λ′) are equivalent
if there exists t ∈ C \ {0} such that td−2λ = λ′ and tw = w ′.

I For the corresponding fT ∈ R[x1, ..., xn], w ∈ Cn is an eigenvector
with eigenvalue λ if

∇fT (w) = dλw .

Therefore, the eigenvectors of f are given by the vanishing of the

2× 2 minors of the matrix [∇fT (x)|x ].
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Eigenvectors of Symmetric Tensors

Example
Let d = 2 and T be an n × n symmetric matrix. Then

fT (x1, . . . , xn) =
∑
i,j

Tijxixj .

Thus,

∇fT (x1, . . . , xn) =


2(
∑n

i=1 T1ixi )
2(
∑n

i=1 T2ixi )
...

2(
∑n

i=1 Tnixi )

 = 2Tx .

So, x is an eigenvector with eigenvalue λ if and only if ∇fT (x) = 2λx .



Eigenvectors of Symmetric Tensors

Example
Let

T = e⊗3
1 + e⊗3

2 + e⊗3
3 and fT (x , y , z) = x3 + y3 + z3.

Then, (x , y , z)T is an eigenvector of fT if and only if the 2× 2 minors of

the matrix

 x
∇f y

z

 =

3x2 x
3y2 y
3z2 z

 vanish. Therefore,

x2y − xy2 = x2z − xz2 = y2z − yz2 = 0.

This is equivalent to

xy(x − y) = xz(x − z) = yz(y − z) = 0.

The solutions are (up to scaling):

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.



Eigenvectors of Odeco Tensors

If T =
∑n

i=1 λiv
⊗d
i is an odeco tensor, i.e. v1, ..., vn are

orthonormal, then the vectors vk , k = 1, ..., n are eigenvectors of T
with corresponding eigenvalues λk , k = 1, ..., n:

Tvd−1
k =

n∑
i=1

λivi (vk · vi )d−1 = λkvk .

I Is there an easy way of finding these vectors, i.e. finding the
orthogonal decomposition of an odeco tensor?

I Are these all of the eigenvectors of an odeco tensor?
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Robust Eigenvectors

Definition
A unit vector u ∈ Rn is a robust eigenvector of a tensor T ∈ Sd(Rn) if
there exists ε > 0 such that for all θ ∈ Bε(u) = {u′ : ||u − u′|| < ε},
repeated iteration of the map

θ 7→ Tθd−1

||Tθd−1||
, (1)

starting from θ converges to u.

Theorem (Anandkumar et al.)
Let T have an orthogonal decomposition T =

∑k
i=1 λiv

⊗d
i with

v1, . . . , vk orthonormal, and assume that λ1, . . . , λk > 0.

1. The set of θ ∈ Rn which do not converge to some vi under repeated
iteration of (1) has measure 0.

2. The set of robust eigenvectors of T is equal to {v1, v2, ..., vk}.



The Tensor Power Method

Algorithm
Input: An odeco tensor T .
Output: An orthogonal representation of T .

Repeat
Find vi ← power method output starting from a random u ∈ Rn.
Recover λi = T · vd

i .
T ← T − λiv⊗di .

Return v1, ..., vk and λ1, ..., λk .

The tensor power method consists of repeated iteration of the map

u 7→ Tud−1

||Tud−1||
,

or equivalently,

u 7→ ∇f (u)

||∇f (u)||
.



The Number of Eigenvectors of a Tensor

Recall: Given a tensor T ∈ Sd(Cn) with corresponding polynomial fT ,
the eigenvectors x ∈ Cn are the solutions to the equations given by the
2× 2 minors of the matrix [

∇fT (x)|x
]
.

Theorem (Sturmfels and Cartwright)
If a tensor T ∈ Sd(Cn) has finitely many eigenvectors, then their number

is (d−1)n−1
d−2 .



Eigenvectors of Odeco Tensors

Odeco tensors are nice because we can characterize all of their eigenvectors.

Theorem
Let T ∈ Sd (Cn) be an odeco tensor with d ≥ 3 and T =

∑n
i=1 λiv

⊗d
i . Then, T has

(d−1)n−1
d−2

eigenvectors. Explicitly, they are

x1

...
xn

 = λ
− 1

d−2

σ(1)
vσ(1) + η2λ

− 1
d−2

σ(2)
vσ(2) + · · ·+ ηkλ

− 1
d−2

σ(k)
vσ(k),

where k = 1, ..., n, η2, ..., ηk are (d − 2)-nd roots of unity and σ is a permutation on
{1, . . . , n}.



Eigenvectors of Odeco Tensors

Example (d = 3, n = 3)
Let

T = e⊗3
1 + e⊗3

2 + e⊗3
3 .

Then, V = I , the identity matrix and the eigenvectors of T are:

k = 1 (1 : 0 : 0)T , (0 : 1 : 0)T , (0 : 0 : 1)T

k = 2 (1 : 1 : 0)T , (1 : 0 : 1)T , (0 : 1 : 1)T

k = 3 (1 : 1 : 1)T .



The Set of Odeco Tensors

I Parametric representation:
The set of orthogonally decomposable tensors can be parametrized
by Rn × On(R):

λ,V 7→
n∑

i=1

λiv
⊗d
i .

I Implicit representation:
The set of orthogonally decomposable tensors can also be
represented as the solutions to a set of equations.

Definition
The odeco variety is the set of all odeco tensors in Sd(Rn).

Goal: find equations defining this variety.



The Odeco Variety

Let T ∈ Sd (Rn). For q = 1, . . . , d , consider the tensor T ∗q T ∈ S2(Sd−1(Rn)). Let
F be the set of equations defining by the condition

T ∗q T ∈ S2(d−1)(Rn).

Theorem (Boralevi,Draisma,Horobeţ,R.)
The odeco variety is equal to zero set of F for every n.

Conjecture
The ideal defined by F is prime.
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Odeco Tensors as Algebras

Let T ∈ S3(Rn) be a symmetric tensor of order 3. Let VT = Rn be equipped with a
positive definite inner product (·|·). Then, V has the structure of an algebra via the
product

VT × VT → VT

(x , y) 7→ x ? y := T (x , y , ·).

The inner product is compatible with the product in the sense that

(x ? y |z) = T (x , y , z) = (z ? x |y).

And the product is commutative

x ? y = y ? x .

Theorem (Boralevi,Draisma,Horobeţ,R.)
The tensor T is odeco if and only if (V , ?) is associative, i.e.

x ? (y ? z) = (x ? y) ? z.



Nonsymmetric Tensor Decomposition

Let T ∈ Rn ⊗ Rn ⊗ · · · ⊗ Rn = (Rn)⊗d . A decomposition of T is an
expression of the form

T =
r∑

i=1

λiai ⊗ bi ⊗ ci ⊗ · · · .

A tensor T ∈ Rn ⊗ · · · ⊗ Rn is orthogonally decomposable, or odeco, if
we can decompose it as

T =
n∑

i=1

λiai ⊗ bi ⊗ ci ⊗ · · · ,

so that a1, ..., an ∈ Rn are orthonormal, b1, ..., bn ∈ Rn are orthonormal,
c1, ..., cn ∈ Rn are orthonormal, etc.



Nonsymmetric Odeco Tensors

Example

1. If T ∈ Rn⊗Rn is a matrix, then T has singular value decomposition

T = UΣV T =
k∑

i=1

σiuiv
T
i =

k∑
i=1

σiui ⊗ vi ,

where u1, ..., uk are orthonormal and v1, ..., vk are orthonormal.

2. The tensor T ∈ Rn ⊗ · · · ⊗ Rn given by

T =
n∑

i=1

λiei ⊗ ei ⊗ · · · ⊗ ei

is odeco.



Singular Vector Tuples

Example
Given a matrix T ∈ Rn ⊗ Rn, (u, v) is a singular vector tuple of T if
there exists λ such that

Tu =


...∑

j Tijuj
...

 = λv and TT v =


...∑

i Tijvi
...

 = λu.

Definition
Given a tensor T ∈ Rn ⊗ · · · ⊗ Rn a singular vector tuple is a d-tuple
(x1, · · · , xd) ∈ Cn × · · · × Cn such that for every 1 ≤ k ≤ d ,

T (x1, . . . , xk−1, ·, xk+1, . . . , xd ) = λxk ,

for some λ ∈ C.
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Example

1. If T ∈ Rn ⊗ Rn is a generic matrix with singular value decomposition

T = UΣVT =
n∑

i=1

σiuiv
T
i ,

(u1, v1), ..., (un, vn) are all of the singular vector pairs of T .

2. Let T ∈ Rn ⊗ Rn ⊗ Rn be odeco with

T =
n∑

i=1

λiai ⊗ bi ⊗ ci .

Then, (a1, b1, c1), . . . , (an, bn, cn) are singular vector triples, but there are many
more additional ones.



Tensor Power Method for Nonsymmetric Odeco Tensors

Start with odeco T =
∑
λiai ⊗ bi ⊗ ci .

While T 6= 0 repeat

Choose x(0), y (0), z(0) ∈ Rn.

For i from 1 to N repeat

x(i+1) = T (·, y (i), z(i))

y (i+1) = T (x(i), ·, z(i))

z(i+1) = T (x(i), y (i), ·).

End for

Find
λ = T (x(N), y (N), z(N)).

Set
T = T − λx(N) ⊗ y (N) ⊗ z(N).

End while

Lemma
With probability 1 the tensor power method converges to one of the (ai , bi , ci ). And
each of them has a positive probability of happening.



Singular Vectors of Odeco Tensors

Theorem
Let T ∈ Rn ⊗ · · · ⊗ Rn be odeco with decomposition T =

∑n
i=1 λiai ⊗ bi ⊗ ci ⊗ · · · .

Let A =
(

a1 a2 · · · |an
)
, B =

(
b1 b2 · · · |bn

)
, etc., so that A,B,C , . . .

are orthogonal matrices. Then, the singular vector tuples of T are given as follows:

Type I 
A



λ
− 1

d−2
1

χ12η2λ
− 1

d−2
2

...

χ1kηkλ
− 1

d−2

k
0
...
0


,B



λ
− 1

d−2
1

χ22η2λ
− 1

d−2
2

...

χ2kηkλ
− 1

d−2

k
0
...
0


,C



λ
− 1

d−2
1

χ32η2λ
− 1

d−2
2

...

χ3kηkλ
− 1

d−2

k
0
...
0


, · · ·


,

where 1 ≤ k ≤ n, χij is a 2-nd root of unity, ηi is a (d − 2)-nd root of unity, up
to permutation.

Type II
(Ax1,Bx2, . . . ,Cx3, . . . ) ,

where the matrix X = (xij )ij has at least two zeros in each column and no row is
identical to 0.



The Set of Odeco Tensors

Definition
The odeco variety is the Zariski closure of the set of all odeco tensors in Rn ⊗ · · · ⊗Rn.

For q = 1, . . . , d consider T ∗q T ∈ S2(Rn1 ⊗ · · · ⊗ Rnq−1 ⊗ Rnq+1 ⊗ · · · ⊗ Rnd ).

Let F be the deal defined by the condition that for every q = 1, . . . , d

T ∗q T ∈ S2(Rn1 )⊗ · · · ⊗ S2(Rnq−1 )⊗ S2(Rnq+1 )⊗ · · · ⊗ S2(Rnd ).

Theorem (Boralevi, Draisma, Horobeţ, R.)
The set of orthogonally decomposable tensors equals V(F).

Conjecture
The ideal F is prime.
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Decomposing Tensors into Frames

A general tensor T ∈ Sd (Rn) has rank b 1
n

(n+d−1
d

)
c.

An odeco tensor T =
∑n

i=1 λiv
⊗d
i has rank n.

Question: How to enlarge the set of odeco tensors to contain tensors of higher ranks?

Idea: Let V :=
(
v1, · · · , vr

)
∈ (Rn)r be a finite unit norm tight frame , i.e.

VVT =
r

n
In and ||vj ||2 = 1, j = 1, ..., r .

A tensor T ∈ Sd (Rn) is frame decomposable (or fradeco) if it can be written as

T =
r∑

i=1

λiv
⊗d
i ,

where (v1, ..., vr ) form a finite unit norm tight frame.
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Finite Unit Norm Tight Frames

Examples

I The Mercedes Benz Frame V =

(
0

√
3

2
−
√

3
2

1 − 1
2

− 1
2

)
.
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I V = 1
3
√

3

−5 1 1 3
1 −5 1 3
1 1 −5 3

.

I V =

(
1 0 1√

2
1√
2

0 1 1√
2
− 1√

2

)
.



The tensor power method

Conjecture
Let r = n + 1 and T =

∑n+1
j=1 λjv

⊗d
j with λ1, ..., λn+1 > 0. Then, v1, ..., vn+1 are the

robust eigenvectors of T , so they are found by the tensor power method.

Example (The Mercedes Benz Frame)

Let T =

(
0
1

)⊗5

+

(√
3

2
− 1

2

)⊗5

+

(
−
√

3
2
− 1

2

)⊗5

. The dynamics of the power method looks

like this



The tensor power method

Example
Let n = 2, r = 4, d = 5 and consider the tensor

T = α

(
1
0

)⊗4

+

(
0
1

)⊗4

+

(
1
1

)⊗4

+

(
1
−1

)⊗4

,

where α > 6. The vector

(
1
0

)
is an eigenvector, but none of the other eigenvectors

are real. Therefore, the frame decomposition of T cannot be recovered from its
eigenvectors.
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