# Orthogonally Decomposable Tensors 

Elina Robeva<br>UC Berkeley

Tensors, their Decompositions, and Applications
Queen Mary University of London

August 16, 2016

## Symmetric Tensors

$T$ is an $\underbrace{n \times \ldots \times n}_{d \text { times }}$ symmetric tensor with elements in $\mathbb{R}$ if

$$
T_{i_{1} i_{2} \ldots i_{d}}=T_{i_{\sigma_{1}} i_{\sigma_{2}} \ldots i_{\sigma_{d}}}
$$

for all permutations $\sigma$ of $\{1,2, \ldots, d\}$. Notation: $T \in S^{d}\left(\mathbb{R}^{n}\right)$.
Example $(d=2)$

$$
T=\left(\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n} \\
T_{12} & T_{22} & \cdots & T_{2 n} \\
& & \vdots & \\
T_{1 n} & T_{2 n} & \cdots & T_{n n}
\end{array}\right)
$$

Example $(n=3, d=3)$

$$
T=\underbrace{\left(\begin{array}{lll}
T_{111} & T_{112} & T_{113} \\
T_{112} & T_{122} & T_{123} \\
T_{113} & T_{123} & T_{133}
\end{array}\right)}_{T_{1 .}}, \underbrace{\left(\begin{array}{lll}
T_{112} & T_{122} & T_{123} \\
T_{122} & T_{222} & T_{223} \\
T_{123} & T_{223} & T_{233}
\end{array}\right)}_{T_{2 .}}, \underbrace{\left(\begin{array}{lll}
T_{113} & T_{123} & T_{133} \\
T_{123} & T_{223} & T_{233} \\
T_{133} & T_{233} & T_{333}
\end{array}\right)}_{T_{3 . .}} .
$$

## Symmetric Tensors and Polynomials

An equivalent way of representing a symmetric tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ is by a homogeneous polynomial $f_{T} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ of degree $d$.

Example $(d=2)$
In the case of matrices,

$$
\begin{aligned}
& f_{T}\left(x_{1}, \ldots, x_{n}\right)=x^{T} T x \\
& =\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n} \\
T_{12} & T_{13} & \cdots & T_{2 n} \\
& & \vdots & \\
T_{1 n} & T_{2 n} & \cdots & T_{n n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
& =\sum_{i, j} T_{i j} x_{i} x_{j} .
\end{aligned}
$$

## Symmetric Tensors and Polynomials

For general $T \in S^{d}\left(\mathbb{R}^{n}\right)$,

$$
f_{T}\left(x_{1}, \ldots, x_{n}\right)=T \cdot x^{d}:=\sum_{i_{1}, \ldots, i_{d}=1}^{n} T_{i_{1} \ldots i_{d}} x_{i_{1}} \ldots x_{i_{d}}
$$

## Symmetric Tensors and Polynomials

For general $T \in S^{d}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
f_{T}\left(x_{1}, \ldots, x_{n}\right) & =T \cdot x^{d}:=\sum_{i_{1}, \ldots, i_{d}=1}^{n} T_{i_{1} \ldots i_{d}} x_{i_{1}} \ldots x_{i_{d}} \\
& =\sum_{j_{1}+\cdots+j_{n}=d}\binom{d}{j_{1}, \ldots, j_{n}} \underbrace{1 \ldots 1 \ldots}_{j_{1}} \underbrace{n \ldots n}_{j_{n}} x_{1}^{j_{1}} \ldots x_{n}^{j_{n}} \\
& =\sum_{j_{1}+\cdots+j_{n}=d} u_{j_{1}, \ldots, j_{n}}^{j_{1}} x_{1}^{j_{1}} \ldots x_{n}^{j_{n}} .
\end{aligned}
$$

Example ( $n=3, d=2$ )
For $3 \times 3$ matrices,

$$
\begin{aligned}
& f_{T}\left(x_{1}, x_{2}, x_{3}\right)=\sum_{i_{1}, i_{2}=1}^{3} T_{i_{1} i_{2}} x_{i_{1}} x_{i_{2}} \\
& =\underbrace{T_{11}}_{u_{2,0,0}} x_{1}^{2}+\underbrace{2 T_{12}}_{u_{1,1,0}} x_{1} x_{2}+\underbrace{2 T_{13}}_{u_{1,0,1}} x_{1} x_{3}+\underbrace{T_{22}}_{u_{0,2,0}} x_{2}^{2}+\underbrace{2 T_{23}}_{u_{0,1,1}} x_{2} x_{3}+\underbrace{T_{33}}_{u_{0,0,2}} x_{3}^{2} .
\end{aligned}
$$

## Symmetric Tensor Decomposition

A symmetric decomposition of a symmetric tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ is

$$
T=\sum_{i=1}^{r} \lambda_{i} v_{i}^{\otimes d}
$$

If $f_{T} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is the corresponding polynomial, then

$$
f_{T}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{r} \lambda_{i}\left(v_{i} \cdot x\right)^{d}=\sum_{i=1}^{r} \lambda_{i}\left(v_{i 1} x_{1}+v_{i 2} x_{2}+\cdots+v_{i n} x_{n}\right)^{d}
$$

The smallest $r$ for which such a decomposition exists is the symmetric rank of $T$.

## Orthogonal Tensor Decomposition

An orthogonal symmetric decomposition of a symmetric tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ is a decomposition

$$
T=\sum_{i=1}^{r} \lambda_{i} v_{i}^{\otimes d} \text { with corresponding } f_{T}=\sum_{i=1}^{r} \lambda_{i}\left(v_{i} \cdot x\right)^{d}
$$

such that the vectors $v_{1}, \ldots, v_{r} \in \mathbb{R}^{n}$ are orthonormal. In particular, $r \leq n$.

## Definition

A tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ is orthogonally decomposable, or odeco, if it has an orthogonal decomposition.

## Examples

1. All symmetric matrices are odeco: by the spectral theorem

$$
\begin{gathered}
T=V^{T} \wedge V=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
v_{1} & \cdots & v_{n} \\
\mid & \cdots & \mid
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]\left[\begin{array}{ccc}
- & v_{1} & - \\
& \vdots & \\
- & v_{n} & -
\end{array}\right] \\
=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T}=\sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes 2}
\end{gathered}
$$

where $v_{1}, \ldots, v_{n}$ is an orthonormal basis of eigenvectors.
2. The Fermat polynomial: If $v_{i}=e_{i}$, for $i=1, \ldots, n$, then

$$
\begin{gathered}
f_{T}\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{d}+x_{2}^{d}+\cdots+x_{n}^{d}, \\
T=e_{1}^{\otimes d}+e_{2}^{\otimes d}+\cdots+e_{n}^{\otimes d} .
\end{gathered}
$$

## An Application: Exchangeable Single Topic Models



Pick a topic $h \in\{1,2, \ldots, k\}$ with distribution $\left(w_{1}, \ldots, w_{k}\right) \in \Delta_{k-1}$. Given $h=j, x_{1}, \ldots, x_{d}$ are i.i.d random variables taking values in $\{1,2, \ldots, n\}$ with distribution $\mu_{j}=\left(\mu_{j 1}, \ldots, \mu_{j n}\right) \in \Delta_{n-1}$.

## An Application: Exchangeable Single Topic Models



Pick a topic $h \in\{1,2, \ldots, k\}$ with distribution $\left(w_{1}, \ldots, w_{k}\right) \in \Delta_{k-1}$. Given $h=j, x_{1}, \ldots, x_{d}$ are i.i.d random variables taking values in $\{1,2, \ldots, n\}$ with distribution $\mu_{j}=\left(\mu_{j 1}, \ldots, \mu_{j n}\right) \in \Delta_{n-1}$.

Then, the joint distribution of $x_{1}, \ldots, x_{d}$ is an $\underbrace{n \times n \times \cdots \times n}_{d \text { times }}$ symmetric tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ whose entries sum to 1 . Moreover,

$$
T=\sum_{j=1}^{k} \mathbb{P}(h=j) \mathbb{P}\left(x_{1} \mid h=j\right) \otimes \cdots \otimes \mathbb{P}\left(x_{d} \mid h=j\right)=\sum_{j=1}^{k} w_{j} \mu_{j}^{\otimes d} .
$$

## An Application: Exchangeable Single Topic Models



Pick a topic $h \in\{1,2, \ldots, k\}$ with distribution $\left(w_{1}, \ldots, w_{k}\right) \in \Delta_{k-1}$. Given $h=j, x_{1}, \ldots, x_{d}$ are i.i.d random variables taking values in $\{1,2, \ldots, n\}$ with distribution $\mu_{j}=\left(\mu_{j 1}, \ldots, \mu_{j n}\right) \in \Delta_{n-1}$.

Then, the joint distribution of $x_{1}, \ldots, x_{d}$ is an $\underbrace{n \times n \times \cdots \times n}_{d \text { times }}$ symmetric tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ whose entries sum to 1 . Moreover,

$$
T=\sum_{j=1}^{k} \mathbb{P}(h=j) \mathbb{P}\left(x_{1} \mid h=j\right) \otimes \cdots \otimes \mathbb{P}\left(x_{d} \mid h=j\right)=\sum_{j=1}^{k} w_{j} \mu_{j}^{\otimes d} .
$$

Given $T$, to recover the parameters $w, \mu$, use a transformation $T \mapsto T_{\text {od }}$ and decompose $T_{\text {od }}$ [Anandkumar et al.].

## Eigenvectors of Tensors

Consider a symmetric tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$.
Example ( $d=2$ )
$T$ is an $n \times n$ matrix and $w \in \mathbb{C}^{n}$ is an eigenvector if

$$
T w=\left(\begin{array}{c}
\vdots \\
\sum_{j=1}^{n} T_{i, j} w_{j} \\
\vdots
\end{array}\right)=\lambda w .
$$

Example ( $d=3$ )
$T$ is an $n \times n \times n$ tensor and $w \in \mathbb{C}^{n}$ is an eigenvector if

$$
T w^{2}:=\left(\begin{array}{c}
\vdots \\
\sum_{j, k=1}^{n} T_{i, j, k} w_{j} w_{k} \\
\vdots
\end{array}\right)=\lambda w .
$$

## Eigenvectors of Symmetric Tensors

## Definition

- Given a symmetric tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$, an eigenvector of $T$ with eigenvalue $\lambda$ is a vector $w \in \mathbb{C}^{n}$ such that

$$
T w^{d-1}:=\left(\begin{array}{c}
\vdots \\
\sum_{i_{2}, \ldots, i_{d}=1}^{n} T_{i, i_{2}, \ldots, i_{d}} w_{i_{2}} \ldots w_{i_{d}} \\
\vdots
\end{array}\right)=\lambda w .
$$

Two eigenvector-eigenvalue pairs $(w, \lambda)$ and $\left(w^{\prime}, \lambda^{\prime}\right)$ are equivalent if there exists $t \in \mathbb{C} \backslash\{0\}$ such that $t^{d-2} \lambda=\lambda^{\prime}$ and $t w=w^{\prime}$.

- For the corresponding $f_{T} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right], w \in \mathbb{C}^{n}$ is an eigenvector with eigenvalue $\lambda$ if

$$
\nabla f_{T}(w)=d \lambda w
$$

## Eigenvectors of Symmetric Tensors

## Definition

- Given a symmetric tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$, an eigenvector of $T$ with eigenvalue $\lambda$ is a vector $w \in \mathbb{C}^{n}$ such that

$$
T w^{d-1}:=\left(\begin{array}{c}
\vdots \\
\sum_{i_{2}, \ldots, i_{d}=1}^{n} T_{i, i_{2}, \ldots, i_{d}} w_{i_{2}} \ldots w_{i_{d}} \\
\vdots
\end{array}\right)=\lambda w .
$$

Two eigenvector-eigenvalue pairs $(w, \lambda)$ and ( $w^{\prime}, \lambda^{\prime}$ ) are equivalent if there exists $t \in \mathbb{C} \backslash\{0\}$ such that $t^{d-2} \lambda=\lambda^{\prime}$ and $t w=w^{\prime}$.

- For the corresponding $f_{T} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right], w \in \mathbb{C}^{n}$ is an eigenvector with eigenvalue $\lambda$ if

$$
\nabla f_{T}(w)=d \lambda w
$$

Therefore, the eigenvectors of $f$ are given by the vanishing of the $2 \times 2$ minors of the matrix $\left[\nabla f_{T}(x) \mid x\right]$.

## Eigenvectors of Symmetric Tensors

## Example

Let $d=2$ and $T$ be an $n \times n$ symmetric matrix. Then

$$
f_{T}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j} T_{i j} x_{i} x_{j} .
$$

Thus,

$$
\nabla f_{T}\left(x_{1}, \ldots, x_{n}\right)=\left(\begin{array}{c}
2\left(\sum_{i=1}^{n} T_{1 i} x_{i}\right) \\
2\left(\sum_{i=1}^{n} T_{2 i} x_{i}\right) \\
\vdots \\
2\left(\sum_{i=1}^{n} T_{n i} x_{i}\right)
\end{array}\right)=2 T x .
$$

So, $x$ is an eigenvector with eigenvalue $\lambda$ if and only if $\nabla f_{T}(x)=2 \lambda x$.

## Eigenvectors of Symmetric Tensors

## Example

Let

$$
T=e_{1}^{\otimes 3}+e_{2}^{\otimes 3}+e_{3}^{\otimes 3} \text { and } f_{T}(x, y, z)=x^{3}+y^{3}+z^{3} .
$$

Then, $(x, y, z)^{T}$ is an eigenvector of $f_{T}$ if and only if the $2 \times 2$ minors of
the matrix $\left[\begin{array}{ll}x & x \\ \nabla f & y \\ & z\end{array}\right]=\left[\begin{array}{ll}3 x^{2} & x \\ 3 y^{2} & y \\ 3 z^{2} & z\end{array}\right]$ vanish. Therefore,

$$
x^{2} y-x y^{2}=x^{2} z-x z^{2}=y^{2} z-y z^{2}=0 .
$$

This is equivalent to

$$
x y(x-y)=x z(x-z)=y z(y-z)=0 .
$$

The solutions are (up to scaling):

$$
\{(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)\} .
$$

## Eigenvectors of Odeco Tensors

If $T=\sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes d}$ is an odeco tensor, i.e. $v_{1}, \ldots, v_{n}$ are orthonormal, then the vectors $v_{k}, k=1, \ldots, n$ are eigenvectors of $T$ with corresponding eigenvalues $\lambda_{k}, k=1, \ldots, n$ :

$$
T v_{k}^{d-1}=\sum_{i=1}^{n} \lambda_{i} v_{i}\left(v_{k} \cdot v_{i}\right)^{d-1}=\lambda_{k} v_{k} .
$$

## Eigenvectors of Odeco Tensors

If $T=\sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes d}$ is an odeco tensor, i.e. $v_{1}, \ldots, v_{n}$ are orthonormal, then the vectors $v_{k}, k=1, \ldots, n$ are eigenvectors of $T$ with corresponding eigenvalues $\lambda_{k}, k=1, \ldots, n$ :

$$
T v_{k}^{d-1}=\sum_{i=1}^{n} \lambda_{i} v_{i}\left(v_{k} \cdot v_{i}\right)^{d-1}=\lambda_{k} v_{k}
$$

- Is there an easy way of finding these vectors, i.e. finding the orthogonal decomposition of an odeco tensor?


## Eigenvectors of Odeco Tensors

If $T=\sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes d}$ is an odeco tensor, i.e. $v_{1}, \ldots, v_{n}$ are orthonormal, then the vectors $v_{k}, k=1, \ldots, n$ are eigenvectors of $T$ with corresponding eigenvalues $\lambda_{k}, k=1, \ldots, n$ :

$$
T v_{k}^{d-1}=\sum_{i=1}^{n} \lambda_{i} v_{i}\left(v_{k} \cdot v_{i}\right)^{d-1}=\lambda_{k} v_{k}
$$

- Is there an easy way of finding these vectors, i.e. finding the orthogonal decomposition of an odeco tensor?
- Are these all of the eigenvectors of an odeco tensor?


## Robust Eigenvectors

## Definition

A unit vector $u \in \mathbb{R}^{n}$ is a robust eigenvector of a tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ if there exists $\epsilon>0$ such that for all $\theta \in \mathcal{B}_{\epsilon}(u)=\left\{u^{\prime}:\left\|u-u^{\prime}\right\|<\epsilon\right\}$, repeated iteration of the map

$$
\begin{equation*}
\theta \mapsto \frac{T \theta^{d-1}}{\left\|T \theta^{d-1}\right\|} \tag{1}
\end{equation*}
$$

starting from $\theta$ converges to $u$.

Theorem (Anandkumar et al.)
Let $T$ have an orthogonal decomposition $T=\sum_{i=1}^{k} \lambda_{i} v_{i}^{\otimes d}$ with $v_{1}, \ldots, v_{k}$ orthonormal, and assume that $\lambda_{1}, \ldots, \lambda_{k}>0$.

1. The set of $\theta \in \mathbb{R}^{n}$ which do not converge to some $v_{i}$ under repeated iteration of (1) has measure 0 .
2. The set of robust eigenvectors of $T$ is equal to $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$.

## The Tensor Power Method

## Algorithm

Input: An odeco tensor $T$.
Output: An orthogonal representation of $T$.

Repeat
Find $v_{i} \leftarrow$ power method output starting from a random $u \in \mathbb{R}^{n}$.
Recover $\lambda_{i}=T \cdot v_{i}^{d}$.
$T \leftarrow T-\lambda_{i} v_{i}^{\otimes d}$.
Return $v_{1}, \ldots, v_{k}$ and $\lambda_{1}, \ldots, \lambda_{k}$.

The tensor power method consists of repeated iteration of the map

$$
u \mapsto \frac{T u^{d-1}}{\left\|T u^{d-1}\right\|}
$$

or equivalently,

$$
u \mapsto \frac{\nabla f(u)}{\|\nabla f(u)\|}
$$

## The Number of Eigenvectors of a Tensor

Recall: Given a tensor $T \in S^{d}\left(\mathbb{C}^{n}\right)$ with corresponding polynomial $f_{T}$, the eigenvectors $x \in \mathbb{C}^{n}$ are the solutions to the equations given by the $2 \times 2$ minors of the matrix

$$
\left[\nabla f_{T}(x) \mid x\right] .
$$

Theorem (Sturmfels and Cartwright)
If a tensor $T \in S^{d}\left(\mathbb{C}^{n}\right)$ has finitely many eigenvectors, then their number is $\frac{(d-1)^{n}-1}{d-2}$.

## Eigenvectors of Odeco Tensors

Odeco tensors are nice because we can characterize all of their eigenvectors.
Theorem
Let $T \in S^{d}\left(\mathbb{C}^{n}\right)$ be an odeco tensor with $d \geq 3$ and $T=\sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes d}$. Then, $T$ has $\frac{(d-1)^{n}-1}{d-2}$ eigenvectors. Explicitly, they are

$$
\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\lambda_{\sigma(1)}^{-\frac{1}{d-2}} v_{\sigma(1)}+\eta_{2} \lambda_{\sigma(2)}^{-\frac{1}{d-2}} v_{\sigma(2)}+\cdots+\eta_{k} \lambda_{\sigma(k)}^{-\frac{1}{d-2}} v_{\sigma(k)},
$$

where $k=1, \ldots, n, \eta_{2}, \ldots, \eta_{k}$ are $(d-2)$-nd roots of unity and $\sigma$ is a permutation on $\{1, \ldots, n\}$.

## Eigenvectors of Odeco Tensors

Example ( $d=3, n=3$ )
Let

$$
T=e_{1}^{\otimes 3}+e_{2}^{\otimes 3}+e_{3}^{\otimes 3}
$$

Then, $V=I$, the identity matrix and the eigenvectors of $T$ are:

$$
\begin{aligned}
& k=1(1: 0: 0)^{T},(0: 1: 0)^{T},(0: 0: 1)^{T} \\
& k=2(1: 1: 0)^{T},(1: 0: 1)^{T},(0: 1: 1)^{T} \\
& k=3(1: 1: 1)^{T} .
\end{aligned}
$$

## The Set of Odeco Tensors

- Parametric representation:

The set of orthogonally decomposable tensors can be parametrized by $\mathbb{R}^{n} \times O_{n}(\mathbb{R})$ :

$$
\lambda, V \mapsto \sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes d}
$$

- Implicit representation:

The set of orthogonally decomposable tensors can also be represented as the solutions to a set of equations.

Definition
The odeco variety is the set of all odeco tensors in $S^{d}\left(\mathbb{R}^{n}\right)$.
Goal: find equations defining this variety.

## The Odeco Variety

Let $T \in S^{d}\left(\mathbb{R}^{n}\right)$. For $q=1, \ldots, d$, consider the tensor $T *_{q} T \in S^{2}\left(S^{d-1}\left(\mathbb{R}^{n}\right)\right)$.

## The Odeco Variety

Let $T \in S^{d}\left(\mathbb{R}^{n}\right)$. For $q=1, \ldots, d$, consider the tensor $T *_{q} T \in S^{2}\left(S^{d-1}\left(\mathbb{R}^{n}\right)\right)$. Let $\mathcal{F}$ be the set of equations defining by the condition

$$
T *_{q} T \in S^{2(d-1)}\left(\mathbb{R}^{n}\right) .
$$

Theorem (Boralevi,Draisma,Horobet,,R.)
The odeco variety is equal to zero set of $\mathcal{F}$ for every $n$.
Conjecture
The ideal defined by $\mathcal{F}$ is prime.

## Odeco Tensors as Algebras

Let $T \in S^{3}\left(\mathbb{R}^{n}\right)$ be a symmetric tensor of order 3 . Let $V_{T}=\mathbb{R}^{n}$ be equipped with a positive definite inner product $(\cdot \mid \cdot)$. Then, $V$ has the structure of an algebra via the product

$$
\begin{aligned}
V_{T} \times V_{T} & \rightarrow V_{T} \\
(x, y) & \mapsto x \star y:=T(x, y, \cdot) .
\end{aligned}
$$

The inner product is compatible with the product in the sense that

$$
(x \star y \mid z)=T(x, y, z)=(z \star x \mid y)
$$

And the product is commutative

$$
x \star y=y \star x .
$$

## Theorem (Boralevi,Draisma,Horobeț,R.)

The tensor $T$ is odeco if and only if $(V, \star)$ is associative, i.e.

$$
x \star(y \star z)=(x \star y) \star z
$$

## Nonsymmetric Tensor Decomposition

Let $T \in \mathbb{R}^{n} \otimes \mathbb{R}^{n} \otimes \cdots \otimes \mathbb{R}^{n}=\left(\mathbb{R}^{n}\right)^{\otimes d}$. A decomposition of $T$ is an expression of the form

$$
T=\sum_{i=1}^{r} \lambda_{i} a_{i} \otimes b_{i} \otimes c_{i} \otimes \cdots
$$

A tensor $T \in \mathbb{R}^{n} \otimes \cdots \otimes \mathbb{R}^{n}$ is orthogonally decomposable, or odeco, if we can decompose it as

$$
T=\sum_{i=1}^{n} \lambda_{i} a_{i} \otimes b_{i} \otimes c_{i} \otimes \cdots
$$

so that $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$ are orthonormal, $b_{1}, \ldots, b_{n} \in \mathbb{R}^{n}$ are orthonormal, $c_{1}, \ldots, c_{n} \in \mathbb{R}^{n}$ are orthonormal, etc.

## Nonsymmetric Odeco Tensors

## Example

1. If $T \in \mathbb{R}^{n} \otimes \mathbb{R}^{n}$ is a matrix, then $T$ has singular value decomposition

$$
T=U \Sigma V^{T}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}=\sum_{i=1}^{k} \sigma_{i} u_{i} \otimes v_{i}
$$

where $u_{1}, \ldots, u_{k}$ are orthonormal and $v_{1}, \ldots, v_{k}$ are orthonormal.
2. The tensor $T \in \mathbb{R}^{n} \otimes \cdots \otimes \mathbb{R}^{n}$ given by

$$
T=\sum_{i=1}^{n} \lambda_{i} e_{i} \otimes e_{i} \otimes \cdots \otimes e_{i}
$$

is odeco.

## Singular Vector Tuples

## Example

Given a matrix $T \in \mathbb{R}^{n} \otimes \mathbb{R}^{n},(u, v)$ is a singular vector tuple of $T$ if there exists $\lambda$ such that

$$
T u=\left[\begin{array}{c}
\vdots \\
\sum_{j} T_{i j} u_{j} \\
\vdots
\end{array}\right]=\lambda v \quad \text { and } \quad T^{T} v=\left[\begin{array}{c}
\vdots \\
\sum_{i} T_{i j} v_{i} \\
\vdots
\end{array}\right]=\lambda u .
$$

## Singular Vector Tuples

## Example

Given a matrix $T \in \mathbb{R}^{n} \otimes \mathbb{R}^{n},(u, v)$ is a singular vector tuple of $T$ if there exists $\lambda$ such that

$$
T u=\left[\begin{array}{c}
\vdots \\
\sum_{j} T_{i j} u_{j} \\
\vdots
\end{array}\right]=\lambda v \quad \text { and } \quad T^{T} v=\left[\begin{array}{c}
\vdots \\
\sum_{i} T_{i j} v_{i} \\
\vdots
\end{array}\right]=\lambda u .
$$

## Definition

Given a tensor $T \in \mathbb{R}^{n} \otimes \cdots \otimes \mathbb{R}^{n}$ a singular vector tuple is a $d$-tuple $\left(x_{1}, \cdots, x_{d}\right) \in \mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n}$ such that for every $1 \leq k \leq d$,

$$
T\left(x_{1}, \ldots, x_{k-1}, \cdot, x_{k+1}, \ldots, x_{d}\right)=\lambda x_{k},
$$

for some $\lambda \in \mathbb{C}$.

## Example

1. If $T \in \mathbb{R}^{n} \otimes \mathbb{R}^{n}$ is a generic matrix with singular value decomposition

$$
T=U \Sigma V^{T}=\sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T}
$$

$\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)$ are all of the singular vector pairs of $T$.
2. Let $T \in \mathbb{R}^{n} \otimes \mathbb{R}^{n} \otimes \mathbb{R}^{n}$ be odeco with

$$
T=\sum_{i=1}^{n} \lambda_{i} a_{i} \otimes b_{i} \otimes c_{i}
$$

Then, $\left(a_{1}, b_{1}, c_{1}\right), \ldots,\left(a_{n}, b_{n}, c_{n}\right)$ are singular vector triples, but there are many more additional ones.

## Tensor Power Method for Nonsymmetric Odeco Tensors

Start with odeco $T=\sum \lambda_{i} a_{i} \otimes b_{i} \otimes c_{i}$.
While $T \neq 0$ repeat
Choose $x^{(0)}, y^{(0)}, z^{(0)} \in \mathbb{R}^{n}$.
For $i$ from 1 to $N$ repeat

$$
\begin{aligned}
& x^{(i+1)}=T\left(\cdot, y^{(i)}, z^{(i)}\right) \\
& y^{(i+1)}=T\left(x^{(i)}, \cdot, z^{(i)}\right) \\
& z^{(i+1)}=T\left(x^{(i)}, y^{(i)}, \cdot\right) .
\end{aligned}
$$

End for
Find

$$
\lambda=T\left(x^{(N)}, y^{(N)}, z^{(N)}\right)
$$

Set

$$
T=T-\lambda x^{(N)} \otimes y^{(N)} \otimes z^{(N)}
$$

End while

## Lemma

With probability 1 the tensor power method converges to one of the $\left(a_{i}, b_{i}, c_{i}\right)$. And each of them has a positive probability of happening.

## Singular Vectors of Odeco Tensors

## Theorem

Let $T \in \mathbb{R}^{n} \otimes \cdots \otimes \mathbb{R}^{n}$ be odeco with decomposition $T=\sum_{i=1}^{n} \lambda_{i} a_{i} \otimes b_{i} \otimes c_{i} \otimes \cdots$. Let $A=\left(a_{1}\left|a_{2}\right| \cdots \mid a_{n}\right), B=\left(b_{1}\left|b_{2}\right| \cdots \mid b_{n}\right)$, etc., so that $A, B, C, \ldots$ are orthogonal matrices. Then, the singular vector tuples of $T$ are given as follows:
Type I

$$
\left.\left(\begin{array}{c}
\lambda_{1}^{-\frac{1}{d-2}} \\
\chi_{12} \eta_{2} \lambda_{2}^{-\frac{1}{d-2}} \\
\vdots \\
\chi_{1 k} \eta_{k} \lambda_{k}^{-\frac{1}{d-2}} \\
0 \\
\vdots \\
0
\end{array}\right], B\left[\begin{array}{c}
\lambda_{1}^{-\frac{1}{d-2}} \\
\chi_{22} \eta_{2} \lambda_{2}^{-\frac{1}{d-2}} \\
\vdots \\
\chi_{2 k} \eta_{k} \lambda_{k}^{-\frac{1}{d-2}} \\
0 \\
\vdots \\
0
\end{array}\right], C\left[\begin{array}{c}
\lambda_{1}^{-\frac{1}{d-2}} \\
\chi_{32} \eta_{2} \lambda_{2}^{-\frac{1}{d-2}} \\
\vdots \\
\chi_{3 k} \eta_{k} \lambda_{k}^{-\frac{1}{d-2}} \\
0 \\
\vdots \\
0
\end{array}\right], \cdots\right)
$$

where $1 \leq k \leq n, \chi_{i j}$ is a 2-nd root of unity, $\eta_{i}$ is a $(d-2)$-nd root of unity, up to permutation.
Type II

$$
\left(A x_{1}, B x_{2}, \ldots, C x_{3}, \ldots\right),
$$

where the matrix $X=\left(x_{i j}\right)_{i j}$ has at least two zeros in each column and no row is identical to 0 .

## The Set of Odeco Tensors

## Definition

The odeco variety is the Zariski closure of the set of all odeco tensors in $\mathbb{R}^{n} \otimes \cdots \otimes \mathbb{R}^{n}$.

For $q=1, \ldots, d$ consider $T *_{q} T \in S^{2}\left(\mathbb{R}^{n_{1}} \otimes \cdots \otimes \mathbb{R}^{n_{q-1}} \otimes \mathbb{R}^{n_{q+1}} \otimes \cdots \otimes \mathbb{R}^{n_{d}}\right)$.

## The Set of Odeco Tensors

## Definition

The odeco variety is the Zariski closure of the set of all odeco tensors in $\mathbb{R}^{n} \otimes \cdots \otimes \mathbb{R}^{n}$.

For $q=1, \ldots, d$ consider $T *_{q} T \in S^{2}\left(\mathbb{R}^{n_{1}} \otimes \cdots \otimes \mathbb{R}^{n_{q-1}} \otimes \mathbb{R}^{n_{q+1}} \otimes \cdots \otimes \mathbb{R}^{n_{d}}\right)$.
Let $\mathcal{F}$ be the deal defined by the condition that for every $q=1, \ldots, d$

$$
T *_{q} T \in S^{2}\left(\mathbb{R}^{n_{1}}\right) \otimes \cdots \otimes S^{2}\left(\mathbb{R}^{n_{q-1}}\right) \otimes S^{2}\left(\mathbb{R}^{n_{q+1}}\right) \otimes \cdots \otimes S^{2}\left(\mathbb{R}^{n_{d}}\right)
$$

Theorem (Boralevi, Draisma, Horobeț, R.)
The set of orthogonally decomposable tensors equals $\mathcal{V}(\mathcal{F})$.

## Conjecture

The ideal $\mathcal{F}$ is prime.

## Decomposing Tensors into Frames

A general tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ has rank $\left\lfloor\frac{1}{n}\binom{n+d-1}{d}\right\rfloor$.
An odeco tensor $T=\sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes d}$ has rank $n$.
Question: How to enlarge the set of odeco tensors to contain tensors of higher ranks?
Idea: Let $V:=\left(\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}\right) \in\left(\mathbb{R}^{n}\right)^{r}$ be a finite unit norm tight frame, i.e.

$$
V V^{T}=\frac{r}{n} I_{n} \quad \text { and } \quad\left\|\mathbf{v}_{j}\right\|^{2}=1, j=1, \ldots, r
$$

## Decomposing Tensors into Frames

A general tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ has rank $\left\lfloor\frac{1}{n}\binom{n+d-1}{d}\right\rfloor$.
An odeco tensor $T=\sum_{i=1}^{n} \lambda_{i} v_{i}^{\otimes d}$ has rank $n$.
Question: How to enlarge the set of odeco tensors to contain tensors of higher ranks?
Idea: Let $V:=\left(\mathbf{v}_{1}, \cdots, \mathbf{v}_{r}\right) \in\left(\mathbb{R}^{n}\right)^{r}$ be a finite unit norm tight frame, i.e.

$$
V V^{T}=\frac{r}{n} I_{n} \quad \text { and } \quad\left\|\mathbf{v}_{j}\right\|^{2}=1, j=1, \ldots, r
$$

A tensor $T \in S^{d}\left(\mathbb{R}^{n}\right)$ is frame decomposable (or fradeco) if it can be written as

$$
T=\sum_{i=1}^{r} \lambda_{i} \mathbf{v}_{i}^{\otimes d}
$$

where $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right)$ form a finite unit norm tight frame.

## Finite Unit Norm Tight Frames

Examples

- The Mercedes Benz Frame $V=\left(\begin{array}{ccc}0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ 1 & -\frac{1}{2} & -\frac{1}{2}\end{array}\right)$.
$-V=\frac{1}{3 \sqrt{3}}\left(\begin{array}{cccc}-5 & 1 & 1 & 3 \\ 1 & -5 & 1 & 3 \\ 1 & 1 & -5 & 3\end{array}\right)$.
$-V=\left(\begin{array}{cccc}1 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 1 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$.


## The tensor power method

## Conjecture

Let $r=n+1$ and $T=\sum_{j=1}^{n+1} \lambda_{j} \mathbf{v}_{j}^{\otimes d}$ with $\lambda_{1}, \ldots, \lambda_{n+1}>0$. Then, $\mathbf{v}_{1}, \ldots, v_{n+1}$ are the robust eigenvectors of $T$, so they are found by the tensor power method.
Example (The Mercedes Benz Frame)
Let $T=\binom{0}{1}^{\otimes 5}+\binom{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}^{\otimes 5}+\binom{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}}^{\otimes 5}$. The dynamics of the power method looks
like this


## The tensor power method

## Example

Let $n=2, r=4, d=5$ and consider the tensor

$$
T=\alpha\binom{1}{0}^{\otimes 4}+\binom{0}{1}^{\otimes 4}+\binom{1}{1}^{\otimes 4}+\binom{1}{-1}^{\otimes 4}
$$

where $\alpha>6$. The vector $\binom{1}{0}$ is an eigenvector, but none of the other eigenvectors are real. Therefore, the frame decomposition of $T$ cannot be recovered from its eigenvectors.

## References

A. Anandkumar, R. Ge, D. Hsu, S. Kakade, and M. Telegarsky: Tensor Decompositions for Learning Latent Variable Models
A. Boralevi, J. Draisma, E. Horobeț and E. Robeva: Orthogonal and Unitary Tensor Decomposition from an Algebraic Perspective. arXiv:1512.08031
J. Brachat, P. Common, B. Mourrain, and E. Tsigaridas: Symmetric Tensor DecompositionD. Cartwright and B. Sturmfels: The Number of Eigenvalues of a Tensor
D. Eisenbud and B. Sturmfels: Binomial Ideals
L. Oeding, E. Robeva and B. Sturmfels. Decomposing Tensors into Frames. Advances in Applied Mathematics, 76 (2016), pp. 125-153
E. Robeva. Orthogonal Decomposition of Symmetric Tensors. SIAM Journal on Matrix Analysis and Applications, 37 (2016), pp. 86-102

E. Robeva and A. Seigal. Singular Vectors of Orthogonally Decomposable Tensors. arXiv:1603.09004

