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Outline

This talk is based on joint work with Luca Moci, arXiv:1209.6571.

I Matroids
I Matroids over a ring
I An application of matroids, yielding matroids over Z
I An application of matroids, yielding matroids over a DVR
I Structure, invariants
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Matroids

Matroids Whitney, Maclane ’30s distil combinatorics from linear algebra.

An early perspective: axiomatize how (abstract) points can be
contained in lines, planes, . . .

The only workable axioms are “local”.

OK Bad: {P, Q, R} and
{P, Q, S} collinear ⇒

all four collinear.

OK, despite Pappus!
(nonrealizable)
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Matroids: definition

There are lots of definitions of matroid, superficially unrelated.
(Rota: “cryptomorphism”.)

Definition
A matroid M on the finite ground set E assigns to each subset A ⊆ E
a rank rk(A) ∈ Z≥0, such that: [. . . ]

Main example: from vector configurations
Let v1, . . . , vn be vectors in a vector space V .

rk(A) := dim span{vi : i ∈ A}

(The vi are our points from last slide.)
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Matroids: definition

Definition
A matroid M on the finite ground set E assigns to each subset A ⊆ E
a rank rk(A) ∈ Z≥0, such that:
(0) rk(∅) = 0
(1) rk(A) ≤ rk(A ∪ {b}) ≤ rk(A) + 1 ∀A 63 b
(2) rk(A) + rk(A ∪ {b, c}) ≤ rk(A ∪ {b}) + rk(A ∪ {c}) ∀A 63 b, c
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Matroids: definition

Definition
A matroid M on the finite ground set E assigns to each subset A ⊆ E
a rank rk(A) ∈ Z≥0, such that:
(0) rk(∅) = 0
(1) rk(A) ≤ rk(A ∪ {b}) ≤ rk(A) + 1 ∀A 63 b
(2) rk(A) + rk(A ∪ {b, c}) ≤ rk(A ∪ {b}) + rk(A ∪ {c}) ∀A 63 b, c

Example

v1

v2

v3

A ∅ 1 2 12 3 13 23 123
rk(A) 0 1 1 1 1 2 2 2
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Matroids over rings

Now let R be a commutative ring.

Let v1, . . . , vn be a configuration of vectors in an R-module N.
We would like a system of axioms for the quotients N/〈vi : i ∈ A〉.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset
A ⊆ E a f.g. R module M(A) up to ∼=, such that

for all A ⊆ E and b, c 6∈ A, there are elements x , y ∈ N = M(A) with

M(A) = N, M(A ∪ {b}) ∼= N/〈x〉,
M(A ∪ {c}) ∼= N/〈y〉, M(A ∪ {b, c}) ∼= N/〈x , y〉.
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Matroids over rings

Now let R be a commutative ring.

Let v1, . . . , vn be a configuration of vectors in an R-module N.
We would like a system of axioms for the quotients N/〈vi : i ∈ A〉.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset
A ⊆ E a f.g. R module M(A) up to ∼=, such that

(1) For all A 63 b, there is a surjection M(A) � M(A ∪ {b}) with
cyclic kernel.

(2) For all A 63 b, c , there are four such maps forming a pushout

M(A)

y
//

��

M(A ∪ {b})

��
M(A ∪ {c}) // M(A ∪ {b, c})

(i.e. the square
commutes and
ker↘ = ker ↓+ ker→)
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Matroids are matroids over fields

Theorem 1 (F-Moci)

Matroids over a field k are equivalent to matroids.

A f.g. k-module is determined by its dimension ∈ Z.

If v1, . . . , vn are vectors in kr ,
the dimension of kr/〈vi : i ∈ N〉 is r − rk(A), the corank of A.

Example

v1

v2

v3 A ∅ 1 2 12 3 13 23 123
M(A) R2 R R R R 0 0 0
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Application 1: hyperplane arrangement comb. & top.

Let H = {H1, . . . , Hn} be hyperplanes in a
vector space W , dim W = r .

I If W is complex, what’s the cohomology
Hk(W \

⋃
H)?

I If W is real, how many components does
W \

⋃
H have?

H1

H2H3

H has a matroid: rk(A) = codim
⋂

i∈A Hi .

This is also the matroid of any dual vector configuration: (vi ∈ W ∨)

such that
Hi = {x : 〈x , vi 〉 = 0}.
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The characteristic polynomial

Answers: define the characteristic polynomial
of H,

χH(q) =
∑
A⊆E

(−1)|A| qr−rk(A).
H1

H2H3

I The complex cohomology is given by∑
k

dim Hk(W \
⋃
H)qk = (−q)rχH(−1/q).

I W \
⋃
H has (−1)rχH(−1) components over the reals.
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Subtorus arrangements

Now let H = {H1, . . . , Hn} be codimension one
tori in an r -dimensional torus T .
[De Concini-Procesi ’10]

Subtori are dual to characters ui ∈ Char(T ):

Hi = {x : ui (x) = 1}.

There is again a characteristic polynomial:

χH(q) =
∑
A⊆E

(−1)|A| m(A) qr−rk(A).

Here
rk(A) = codim

⋂
i∈A Hi = dim span{ui : i ∈ A}

m(A) = # components
⋂

i∈A Hi = [R{ui } ∩ Char(T ) : Z{ui }]
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The characteristic polynomial, again

In terms of the characteristic polynomial

χH(q) =
∑
A⊆E

(−1)|A| m(A) qr−rk(A),

I The complex cohomology of a toric arrangement is given by∑
k

dim Hk(T \
⋃
H)qk = (−q)rχH(−(q + 1)/q).

I T \
⋃
H has (−1)rχH(0) components over the reals.
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Arithmetic matroids

Definition ([Moci-D’Adderio])

An arithmetic matroid is a pair (M, m), where M is a matroid and
m : 2E → Z>0 a multiplicity function, such that
[complicated axioms]

We have a configuration ui ∈ Char(T ) ∼= Zr , and:

Theorem 2 (F-Moci)

Arithmetic matroids are matroids over Z.

Except that arithmetic matroids forget the torsion structure:

Zr/〈uA〉 = Zr−d ⊕ F =⇒ (M(A), m(A)) = (d , |F |)

where F is finite.
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Application 2: tropical geometry

This lies among many algebro-geometric applications:
moduli of hyp arrs [Hacking-Keel-Tevelev], compactifying fine Schubert
cells [Lafforgue], classes of T -orbits on Grassmannians [F-Speyer], . . .

Tropical geometry studies combinatorial “shadows” of algebraic
varieties.

Two conics over C meet in
four points [Bézout]

as do two tropical conics.
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Tropicalization

An algebraic variety X ⊆ (k×)n has a tropicalization Trop X ⊆ Rn.

Suppose (k, ν) has nontrivial valuation ν : k× → R, and k = k.
Then Trop X = ν(X ), coordinatewise.

Example (The line x + y − 1 = 0, over C[[tQ]] and tropically)

(t2, 1 − t2) 7→
(2, 0)

If L ⊆ kn is a linear space, then we tropicalize

L ∩ (k×)n ⊆ (k×)n.

This is the complement of the hyperplane arrangement {L ∩ (xi = 0)}.
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Tropical linear spaces

If the valuation ν is trivial, all tropicalizations are fans.

Theorem (Speyer, ’04)

There is a bijection

{fan tropical linear spaces}←→ {matroids}

Definition; proposition (Dress-Wenzel ’91)

A valuated matroid is a pair (M, m), where M is a matroid and
m : 2E → R a value function, such that [axioms]. There is a bijection

{tropical linear spaces}←→ {valuated matroids}

Proposition (Speyer, ’04)

{tropical linear spaces}←→ {regular subdivisions
of matroid polytopes

}
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Matroids over valuation rings

Let (R, ν) be a valuation ring.

Theorem 3 (F-Moci)

A matroid over R contains the data of a tropical linear space.

Theorem / conjecture

A matroid over R is equivalent to, for each v ∈ ν(R) ∪ {∞},
a full flag of tropical linear spaces, such that [conditions].

The conjectural part is tropical moduli theory (but Haque?)
Our “full flags” tropically satisfy the Plücker relations for the full flag
variety, e.g.

pA∪b pA∪c,d − pA∪c pA∪b,d + pA∪d pA∪b,c = 0

Alex Fink Matroids over rings 16 / 20



Matroids over valuation rings

Let (R, ν) be a valuation ring.

Theorem 3 (F-Moci)

A matroid over R contains the data of a tropical linear space.

Theorem / conjecture

A matroid over R is equivalent to, for each v ∈ ν(R) ∪ {∞},
a full flag of tropical linear spaces, such that [conditions].

The conjectural part is tropical moduli theory (but Haque?)
Our “full flags” tropically satisfy the Plücker relations for the full flag
variety, e.g.

pA∪b pA∪c,d − pA∪c pA∪b,d + pA∪d pA∪b,c = 0

Alex Fink Matroids over rings 16 / 20



Structure theory

The best-behaved matroids are those over Dedekind (or Prüfer)
domains, i.e. rings whose localizations are (discrete) valuation rings.

Key to this is that we can tensor matroids, e.g. localize them:

{matroids over R}
—⊗RS

−−−−−→ {matroids over S}

A matroid M has a dual M∗. rkM(A) determines rkM∗(E \ A).

Example

If M comes from a vector configuration (vi ),

then M∗ comes from its Gale dual: the configuration (wi ) s.t.
{
∑

i wikvi = 0} is a basis for the linear relations among (vi ).

Theorem (F-Moci)

Matroids over Prüfer domains have duals.

Alex Fink Matroids over rings 17 / 20



Structure theory

The best-behaved matroids are those over Dedekind (or Prüfer)
domains, i.e. rings whose localizations are (discrete) valuation rings.

Key to this is that we can tensor matroids, e.g. localize them:

{matroids over R}
—⊗RS

−−−−−→ {matroids over S}

A matroid M has a dual M∗. rkM(A) determines rkM∗(E \ A).

Example

If M comes from a vector configuration (vi ),

then M∗ comes from its Gale dual: the configuration (wi ) s.t.
{
∑

i wikvi = 0} is a basis for the linear relations among (vi ).

Theorem (F-Moci)

Matroids over Prüfer domains have duals.

Alex Fink Matroids over rings 17 / 20



The Tutte polynomial

If M is a matroid, M \ i is its restriction to sets A 63 i , and
M/i is its restriction to sets A 3 i .

Define the Tutte-Grothendieck group to have generators
{TM : M a matroid} and relations

TM = TM\i + TM/i .

In fact it’s a ring.

TM is the Tutte polynomial of M, with many important evaluations
(e.g. the characteristic polynomial).

Theorem (Crapo, Brylawski)

The Tutte-Grothendieck ring is Z[x − 1, y − 1], with

TM =
∑
A⊆E

(x − 1)corankM(A) (y − 1)corankM∗ (E\A)
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The Tutte polynomial for matroids over R

Let R be a Dedekind domain.

Let Z[R-Mod] be the monoid ring of fin. gen. R-modules (up to ∼=)
under direct sum. uNuN ′

= uN⊕N ′
.

Theorem (F-Moci)

The Tutte-Grothendieck ring of matroids over R is (almost)
Z[R-Mod]⊗ Z[R-Mod], with

class of M =
∑
A⊆E

XM(A) Y M∗(E\A)

Some specializations:
I The characteristic polynomial of a subtorus arrangement
I The Tutte quasipolynomial of [Brändén-Moci]
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Future work

I Realizability?
I Other axiom systems: polytopes, circuits, . . . ?
I Connections to quotients of spheres by finite groups [Swartz]?
I . . . to flows on simplicial complexes [Chmutov et al]?
I . . . to convex hulls in Bruhat-Tits buildings [Joswig-Sturmfels-Yu]?
I Extension of structure theory to dimension > 1?

Connections to matroids from Noether normalizations
[Brennan-Epstein]?

Thank you!
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