Matroids over rings

Alex Fink
North Carolina State University

University of Denver
14 January 2013

Outline

This talk is based on joint work with Luca Moci, arXiv:1209.6571.

- Matroids
- Matroids over a ring
- An application of matroids, yielding matroids over \mathbb{Z}
- An application of matroids, yielding matroids over a DVR
- Structure, invariants

Matroids

Matroids Whitney, Maclane '30s distil combinatorics from linear algebra.
An early perspective: axiomatize how (abstract) points can be contained in lines, planes, ...

The only workable axioms are "local".

OK

Bad: $\{P, Q, R\}$ and $\{P, Q, S\}$ collinear \Rightarrow all four collinear.

OK, despite Pappus!
(nonrealizable)

Matroids: definition

There are lots of definitions of matroid, superficially unrelated. (Rota: "cryptomorphism".)

Definition

A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\operatorname{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that: [...]
(The v_{i} are our points from last slide.)

There are lots of definitions of matroid, superficially unrelated. (Rota: "cryptomorphism".)

Definition

A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\operatorname{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that: [...]

Main example: from vector configurations
Let v_{1}, \ldots, v_{n} be vectors in a vector space V.

$$
\operatorname{rk}(A):=\operatorname{dim} \operatorname{span}\left\{v_{i}: i \in A\right\}
$$

(The v_{i} are our points from last slide.)

Definition

A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\operatorname{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that:
(0) $\operatorname{rk}(\emptyset)=0$
(1) $\operatorname{rk}(A) \leq \operatorname{rk}(A \cup\{b\}) \leq \operatorname{rk}(A)+1 \quad \forall A \not \supset b$
(2) $\operatorname{rk}(A)+\operatorname{rk}(A \cup\{b, c\}) \leq \operatorname{rk}(A \cup\{b\})+\operatorname{rk}(A \cup\{c\}) \quad \forall A \not \supset b, c$

Main example: from vector configurations
Let v_{1}, \ldots, v_{n} be vectors in a vector space V.

$$
\operatorname{rk}(A):=\operatorname{dim} \operatorname{span}\left\{v_{i}: i \in A\right\}
$$

(The v_{i} are our points from last slide.)

Matroids: definition

Definition

A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\operatorname{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that:
(0) $\operatorname{rk}(\emptyset)=0$
(1) $\operatorname{rk}(A) \leq \operatorname{rk}(A \cup\{b\}) \leq \operatorname{rk}(A)+1 \quad \forall A \not \supset b$
(2) $\operatorname{rk}(A)+\operatorname{rk}(A \cup\{b, c\}) \leq \operatorname{rk}(A \cup\{b\})+\operatorname{rk}(A \cup\{c\}) \quad \forall A \not \supset b, c$

A	\emptyset	1	2	12	3	13	23	123
$\operatorname{rk}(A)$	0	1	1	1	1	2	2	2

Now let R be a commutative ring.
Let v_{1}, \ldots, v_{n} be a configuration of vectors in an R-module N. We would like a system of axioms for the quotients $N /\left\langle v_{i}: i \in A\right\rangle$.

Main definition [F-Moci]
A matroid over R on the finite ground set E assigns to each subset $A \subseteq E$ a f.g. R module $M(A)$ up to \cong, such that
for all $A \subseteq E$ and $b, c \notin A$, there are elements $x, y \in N=M(A)$ with

Now let R be a commutative ring.
Let v_{1}, \ldots, v_{n} be a configuration of vectors in an R-module N.
We would like a system of axioms for the quotients $N /\left\langle v_{i}: i \in A\right\rangle$.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset $A \subseteq E$ a f.g. R module $M(A)$ up to \cong, such that for all $A \subseteq E$ and $b, c \notin A$, there are elements $x, y \in N=M(A)$ with

$$
\begin{aligned}
M(A) & =N, & M(A \cup\{b\}) & \cong N /\langle x\rangle, \\
M(A \cup\{c\}) & \cong N /\langle y\rangle, & M(A \cup\{b, c\}) & \cong N /\langle x, y\rangle .
\end{aligned}
$$

Matroids over rings

Now let R be a commutative ring.
Let v_{1}, \ldots, v_{n} be a configuration of vectors in an R-module N. We would like a system of axioms for the quotients $N /\left\langle v_{i}: i \in A\right\rangle$.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset $A \subseteq E$ a f.g. R module $M(A)$ up to \cong, such that
(1) For all $A \not \supset b$, there is a surjection $M(A) \rightarrow M(A \cup\{b\})$ with cyclic kernel.
(2) For all $A \not \supset b, c$, there are four such maps forming a pushout

$$
M(A \cup\{c\}) \longrightarrow M(A \cup\{b, c\})
$$

(i.e. the square commutes and ker $\searrow=\operatorname{ker} \downarrow+\operatorname{ker} \rightarrow$)

Matroids are matroids over fields

Theorem 1 (F-Moci)
Matroids over a field \mathbf{k} are equivalent to matroids.

A f.g. k-module is determined by its dimension $\in \mathbb{Z}$.
If v_{1}, \ldots, v_{n} are vectors in \mathbf{k}^{r}, the dimension of $\mathrm{k}^{r} /\left\langle v_{i}: i \in N\right\rangle$ is $r-\operatorname{rk}(A)$, the corank of A.

A	\emptyset	1	2	12	3	13	23	123
$M(A)$	\mathbb{R}^{2}	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	0	0	0

Application 1: hyperplane arrangement comb. \& top.

Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ be hyperplanes in a vector space $W, \quad \operatorname{dim} W=r$.

- If W is complex, what's the cohomology $H^{k}(W \backslash \bigcup \mathcal{H})$?
- If W is real, how many components does $W \backslash \bigcup \mathcal{H}$ have?

\mathcal{H} has a matroid: $\operatorname{rk}(A)=\operatorname{codim} \bigcap_{i \in A} H_{i}$
This is also the matroid of any dual vector configuration: $\left(v_{i} \in W^{V}\right)$
such that
$H_{i}=\left\{x:\left\langle x, v_{i}\right\rangle=0\right\}$.

Application 1: hyperplane arrangement comb. \& top.

Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ be hyperplanes in a vector space $W, \quad \operatorname{dim} W=r$.

- If W is complex, what's the cohomology $H^{k}(W \backslash \bigcup \mathcal{H})$?
- If W is real, how many components does $W \backslash \bigcup \mathcal{H}$ have?

\mathcal{H} has a matroid: $\operatorname{rk}(A)=\operatorname{codim} \bigcap_{i \in A} H_{i}$.
This is also the matroid of any dual vector configuration: $\left(v_{i} \in W^{\vee}\right)$ such that

$$
H_{i}=\left\{x:\left\langle x, v_{i}\right\rangle=0\right\} .
$$

The characteristic polynomial

Answers: define the characteristic polynomial of \mathcal{H},

$$
\chi_{\mathcal{H}}(q)=\sum_{A \subseteq E}(-1)^{|A|} q^{r-\operatorname{rk}(A)}
$$

- The complex cohomology is given by

- $W \backslash \bigcup \mathcal{H}$ has $(-1)^{r} \chi_{\mathcal{H}}(-1)$ components over the reals.

Answers: define the characteristic polynomial of \mathcal{H},

$$
\chi_{\mathcal{H}}(q)=\sum_{A \subseteq E}(-1)^{|A|} q^{r-\operatorname{rk}(A)} .
$$

- The complex cohomology is given by

$$
\sum_{k} \operatorname{dim} H^{k}(W \backslash \bigcup \mathcal{H}) q^{k}=(-q)^{r} \chi_{\mathcal{H}}(-1 / q) .
$$

- $W \backslash \bigcup \mathcal{H}$ has $(-1)^{r} \mathcal{X}_{\mathcal{H}}(-1)$ components over the reals.

Subtorus arrangements

Now let $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ be codimension one tori in an r-dimensional torus T.
[De Concini-Procesi '10]
Subtori are dual to characters $u_{i} \in \operatorname{Char}(T)$:

$$
H_{i}=\left\{x: u_{i}(x)=1\right\} .
$$

There is again a characteristic polynomial:

Here

Subtorus arrangements

Now let $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ be codimension one tori in an r-dimensional torus T.
[De Concini-Procesi '10]
Subtori are dual to characters $u_{i} \in \operatorname{Char}(T)$:

$$
H_{i}=\left\{x: u_{i}(x)=1\right\} .
$$

There is again a characteristic polynomial:

$$
\chi_{\mathcal{H}}(q)=\sum_{A \subseteq E}(-1)^{|A|} m(A) q^{r-\mathrm{rk}(A)}
$$

Here

$$
\begin{array}{ll}
\operatorname{rk}(A)=\operatorname{codim} \bigcap_{i \in A} H_{i}= & \operatorname{dim} \operatorname{span}\left\{u_{i}: i \in A\right\} \\
m(A)=\# \text { components } \bigcap_{i \in A} H_{i}= & {\left[\mathbb{R}\left\{u_{i}\right\} \cap \operatorname{Char}(T): \mathbb{Z}\left\{u_{i}\right\}\right]}
\end{array}
$$

In terms of the characteristic polynomial

$$
\chi_{\mathcal{H}}(q)=\sum_{A \subseteq E}(-1)^{|A|} m(A) q^{r-\mathrm{rk}(A)}
$$

- The complex cohomology of a toric arrangement is given by

$$
\sum_{k} \operatorname{dim} H^{k}(T \backslash \bigcup \mathcal{H}) q^{k}=(-q)^{r} \chi_{\mathcal{H}}(-(q+1) / q)
$$

- $T \backslash \bigcup \mathcal{H}$ has $(-1)^{r} \chi_{\mathcal{H}}(0)$ components over the reals.

Arithmetic matroids

Definition ([Moci-D'Adderio])

An arithmetic matroid is a pair (M, m), where M is a matroid and $m: 2^{E} \rightarrow \mathbb{Z}_{>0}$ a multiplicity function, such that [complicated axioms]

We have a configuration $u_{i} \in \operatorname{Char}(T) \cong \mathbb{Z}^{r}$, and:

Arithmetic matroids are matroids over \mathbb{Z}.

Except that arithmetic matroids forget the torsion structure:

where F is finite.

Arithmetic matroids

Definition ([Moci-D'Adderio])

An arithmetic matroid is a pair (M, m), where M is a matroid and $m: 2^{E} \rightarrow \mathbb{Z}_{>0}$ a multiplicity function, such that [complicated axioms]

We have a configuration $u_{i} \in \operatorname{Char}(T) \cong \mathbb{Z}^{r}$, and:
Theorem 2 (F-Moci)
Arithmetic matroids are matroids over \mathbb{Z}.

Except that arithmetic matroids forget the torsion structure:

$$
\mathbb{Z}^{r} /\left\langle u_{A}\right\rangle=\mathbb{Z}^{r-d} \oplus F \quad \Longrightarrow \quad(M(A), m(A))=(d,|F|)
$$

where F is finite.

Application 2: tropical geometry

This lies among many algebro-geometric applications: moduli of hyp arrs [Hacking-Keel-Tevelev], compactifying fine Schubert cells [Lafforgue], classes of T-orbits on Grassmannians [F-Speyer], ...

Tropical geometry studies combinatorial "shadows" of algebraic varieties.

Two conics over \mathbb{C} meet in four points [Bézout]

as do two tropical conics.

Tropicalization

An algebraic variety $X \subseteq\left(\mathbf{k}^{\times}\right)^{n}$ has a tropicalization $\operatorname{Trop} X \subseteq \mathbb{R}^{n}$.
Suppose (\mathbf{k}, v) has nontrivial valuation $v: \mathbf{k}^{\times} \rightarrow \mathbb{R}$, and $\mathbf{k}=\overline{\mathbf{k}}$. Then $\operatorname{Trop} X=\overline{v(X)}$, coordinatewise.

Example (The line $x+y-1=0$, over $\mathbb{C} \llbracket t^{\mathbb{Q}} \rrbracket$ and tropically)

If $L \subseteq \mathbf{k}^{n}$ is a linear space, then we tropicalize

Tropicalization

An algebraic variety $X \subseteq\left(\mathbf{k}^{\times}\right)^{n}$ has a tropicalization $\operatorname{Trop} X \subseteq \mathbb{R}^{n}$.
Suppose (\mathbf{k}, v) has nontrivial valuation $v: \mathbf{k}^{\times} \rightarrow \mathbb{R}$, and $\mathbf{k}=\overline{\mathbf{k}}$. Then $\operatorname{Trop} X=\overline{v(X)}$, coordinatewise.

Example (The line $x+y-1=0$, over $\mathbb{C} \llbracket t^{\mathbb{Q}} \rrbracket$ and tropically)

If $L \subseteq \mathbf{k}^{n}$ is a linear space, then we tropicalize

$$
L \cap\left(\mathbf{k}^{\times}\right)^{n} \subseteq\left(\mathbf{k}^{\times}\right)^{n} .
$$

This is the complement of the hyperplane arrangement $\left\{L \cap\left(x_{i}=0\right)\right\}$

Tropical linear spaces

If the valuation v is trivial, all tropicalizations are fans.
Theorem (Speyer, '04)
There is a bijection
$\{$ fan tropical linear spaces $\} \longleftrightarrow\{$ matroids $\}$

A valuated matroid is a pair (M, m), where M is a matroid and $m: 2^{E} \rightarrow \mathbb{R}$ a value function, such that [axioms]. There is a bijection \{tropical linear spaces\} \longleftrightarrow \{valuated matroids\}
\square tropical linear spaces $\} \longleftrightarrow\left\{\begin{array}{l}\text { regular subdivisions } \\ \text { of matroid polytopes }\end{array}\right\}$

Tropical linear spaces

If the valuation v is trivial, all tropicalizations are fans.
Theorem (Speyer, '04)
There is a bijection

$$
\{\text { fan tropical linear spaces }\} \longleftrightarrow\{\text { matroids }\}
$$

Definition; proposition (Dress-Wenzel '91)
A valuated matroid is a pair (M, m), where M is a matroid and $m: 2^{E} \rightarrow \mathbb{R}$ a value function, such that [axioms]. There is a bijection \{tropical linear spaces\} \longleftrightarrow \{valuated matroids\}

Proposition (Speyer, '04)

$$
\{\text { tropical linear spaces }\} \longleftrightarrow\left\{\begin{array}{l}
\text { regular subdivisions } \\
\text { of matroid polytopes }
\end{array}\right\}
$$

Matroids over valuation rings

Let (R, v) be a valuation ring.
Theorem 3 (F-Moci)
A matroid over R contains the data of a tropical linear space.

Theorem / conjecture
A matroid over R is equivalent to, for each $v \in v(R) \cup\{\infty\}$,
a full flag of tropical linear spaces, such that [conditions]
The conjectural part is tropical moduli theory (but Haque?)
Our "full flags" tropically satisfy the Plücker relations for the full flag variety, e.g

$$
p_{A \cup b} p_{A \cup c, d}-p_{A \cup c} p_{A \cup b, d}+p_{A \cup d} p_{A \cup b, c}=0
$$

Matroids over valuation rings

Let (R, v) be a valuation ring.
Theorem 3 (F-Moci)
A matroid over R contains the data of a tropical linear space.

Theorem / conjecture
A matroid over R is equivalent to, for each $v \in v(R) \cup\{\infty\}$, a full flag of tropical linear spaces, such that [conditions].

The conjectural part is tropical moduli theory (but Haque?) Our "full flags" tropically satisfy the Plücker relations for the full flag variety, e.g.

$$
p_{A \cup b} p_{A \cup c, d}-p_{A \cup c} p_{A \cup b, d}+p_{A \cup d} p_{A \cup b, c}=0
$$

Structure theory

The best-behaved matroids are those over Dedekind (or Prüfer) domains, i.e. rings whose localizations are (discrete) valuation rings.

Key to this is that we can tensor matroids, e.g. localize them:

$$
\{\text { matroids over } R\} \xrightarrow{\text { 一 } \otimes_{R} S} \quad\{\text { matroids over } S\}
$$

\square
Matroids over Prüfer domains have duals.

Structure theory

The best-behaved matroids are those over Dedekind (or Prüfer) domains, i.e. rings whose localizations are (discrete) valuation rings.

Key to this is that we can tensor matroids, e.g. localize them:
$\{$ matroids over $R\} \quad \longrightarrow \otimes_{R} S \quad\{$ matroids over $S\}$

A matroid M has a dual $M^{*} . \quad \operatorname{rk}_{M}(A)$ determines $\operatorname{rk}_{M^{*}}(E \backslash A)$.

Example

If M comes from a vector configuration $\left(v_{i}\right)$, then M^{*} comes from its Gale dual: the configuration $\left(w_{i}\right)$ s.t. $\left\{\sum_{i} w_{i k} v_{i}=0\right\}$ is a basis for the linear relations among $\left(v_{i}\right)$.

Theorem (F-Moci)

Matroids over Prüfer domains have duals.

The Tutte polynomial

If M is a matroid, $M \backslash i$ is its restriction to sets $A \not \supset i$, and M / i is its restriction to sets $A \ni i$.

Define the Tutte-Grothendieck group to have generators
$\left\{T_{M}: M\right.$ a matroid $\}$ and relations

In fact it's a ring.
T_{M} is the Tutte polynomial of M, with many important evaluations (e.g. the characteristic polynomial)

Theorem (Crapo, Brylawski)
The Tutte-Grothendieck ring is $\mathbb{Z}[x-1, y-1]$, with

The Tutte polynomial

If M is a matroid, $M \backslash i$ is its restriction to sets $A \not \supset i$, and M / i is its restriction to sets $A \ni i$.

Define the Tutte-Grothendieck group to have generators $\left\{T_{M}: M\right.$ a matroid $\}$ and relations

$$
T_{M}=T_{M \backslash i}+T_{M / i}
$$

In fact it's a ring.
T_{M} is the Tutte polynomial of M, with many important evaluations (e.g. the characteristic polynomial).

Theorem (Crapo, Brylawski)
The Tutte-Grothendieck ring is $\mathbb{Z}[x-1, y-1]$, with

$$
T_{M}=\sum_{A \subseteq E}(x-1)^{\text {corank }_{M}(A)}(y-1)^{\text {corank }_{M^{*}}(E \backslash A)}
$$

The Tutte polynomial for matroids over R

Let R be a Dedekind domain.
Let $\mathbb{Z}[R$-Mod] be the monoid ring of fin. gen. R-modules (up to \cong) under direct sum. $\quad u^{N} u^{N^{\prime}}=u^{N \oplus N^{\prime}}$.

Theorem (F-Moci)
The Tutte-Grothendieck ring of matroids over R is (almost) $\mathbb{Z}[R$-Mod $] \otimes \mathbb{Z}[R$-Mod], with

$$
\text { class of } M=\sum_{A \subseteq E} X^{M(A)} Y^{M^{*}(E \backslash A)}
$$

Some specializations:

- The characteristic polynomial of a subtorus arrangement
- The Tutte quasipolynomial of [Brändén-Moci]

Future work

- Realizability?
- Other axiom systems: polytopes, circuits, ... ?
- Connections to quotients of spheres by finite groups [Swartz]?
- ... to flows on simplicial complexes [Chmutov et al]?
- ... to convex hulls in Bruhat-Tits buildings [Joswig-Sturmfels-Yu]?
- Extension of structure theory to dimension >1 ? Connections to matroids from Noether normalizations [Brennan-Epstein]?

Thank you!

Future work

- Realizability?
- Other axiom systems: polytopes, circuits, ... ?
- Connections to quotients of spheres by finite groups [Swartz]?
- . . . to flows on simplicial complexes [Chmutov et al]?
- ... to convex hulls in Bruhat-Tits buildings [Joswig-Sturmfels-Yu]?
- Extension of structure theory to dimension >1 ? Connections to matroids from Noether normalizations [Brennan-Epstein]?

Thank you!

