The intersection property for conditional independence

Alex Fink

Queen Mary University of London

Algebraic Methods in Statistics Osnabrück, Advent 2017

∃ → (∃ →

Conditional independence

Let $X = (X_1, \dots, X_n)$ be a random var with outcomes $\Omega = \prod_{i=1}^n \Omega_i$. Write $X_A = (X_i)_{i \in A}$, etc.

Let A, B, C be disjoint subsets of the index set [n]. The conditional independence ("Cl") statement

$$X_A \perp \!\!\!\perp X_B \mid X_C$$

asserts of X that

$$\mathbf{P}(x_A = a, x_B = b \mid x_C = c) = \mathbf{P}(x_A = a \mid x_C = c) \cdot \mathbf{P}(x_B = b \mid x_C = c)$$

i.e.

$$P(x_A = a, x_B = b, x_C = c)P(x_C = c) = P(x_A = a, x_C = c)P(x_B = b, x_C = c)$$

for all $a \in \Omega_A$, $b \in \Omega_B$, and $c \in \operatorname{supp} X_c$.

		0 / 15
Alex Fink	The intersection property for CI	2 / 15

Why CI?

CI is important in understanding observed data:

- identifying irrelevant variables, for dimensionality reduction
- inference of causal relationships

The first attempt to capture all the CI relationships in a dataset was through graphs, each edge being an "atomic" causation.

But this is insufficiently general: not all distributions have a graph.

Why CI?

CI is important in understanding observed data:

- identifying irrelevant variables, for dimensionality reduction
- inference of causal relationships

The first attempt to capture all the CI relationships in a dataset was through graphs, each edge being an "atomic" causation.

But this is insufficiently general: not all distributions have a graph.

ヘロト 不得下 不可下 不可下

Why CI?

CI is important in understanding observed data:

- identifying irrelevant variables, for dimensionality reduction
- inference of causal relationships

The first attempt to capture all the CI relationships in a dataset was through graphs, each edge being an "atomic" causation.

But this is insufficiently general: not all distributions have a graph.

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Let X be discrete with outcome probabilities $p_{abcz} = \mathbf{P}(x_A = a, ...)$. The CI statement

$$X_A \perp \!\!\!\perp X_B \mid X_C$$

says that one gets a rank 1 matrix from the tensor (p_{abcd}) by

- flattening in the A × B direction;
- slicing in the C direction;
- marginalising in the $Z = [n] \setminus (A \cup B \cup C)$ direction.

The ideal of $X_A \perp \!\!\perp X_B \mid X_C$ is

$$(p_{a_1b_1c}+p_{a_2b_2c}+-p_{a_1b_2c}+p_{a_2b_1c}+)$$

where $p_{abc+} = \sum_{z} p_{abcz}$.

・ 伊 ト ・ ヨ ト ・ ヨ ト

= nar

[Pearl-Paz '87] How to capture the combinatorics of the sets of CI statements that hold of some distribution?

Semigraphoids, defined by four conditional independence axioms. Symmetry $X_A \perp \!\!\!\perp X_B \mid X_C \Longrightarrow X_B \perp X_A \mid X_C$ Decomposition $X_A \perp X_{B\cup C} \mid X_D \Longrightarrow X_A \perp X_B \mid X_D$ Weak union $X_A \perp X_{B\cup C} \mid X_D \Longrightarrow X_A \perp X_B \mid X_{C\cup D}$ Contraction $(X_A \perp X_B \mid X_{C\cup D} \text{ and } X_A \perp X_C \mid X_D) \Longrightarrow$ $X_A \perp X_{B\cup C} \mid X_D$

(These don't completely characterise distributions; no finite list of axioms can. But they are the complete list with ≤ 2 conjuncts. [Studený '92, '97])

∃ nar

The intersection axiom

[Pearl-Paz '87] How to capture the combinatorics of the sets of CI statements that hold of some distribution? (semigraphoids, graphoids)

The intersection axiom *almost* holds:

$$X_A \perp\!\!\!\perp X_B \mid X_{C \cup D}, \ X_A \perp\!\!\!\perp X_C \mid X_{B \cup D} \stackrel{?}{\Longrightarrow} X_A \perp\!\!\!\perp X_{B \cup C} \mid X_D$$

Let's analyse it in the discrete case.

$$\mathcal{I} := (p_{i_1 j_1 k} p_{i_2 j_2 k} - p_{i_2 j_1 k} p_{i_1 j_2 k}, p_{i_1 j k_1} p_{i_2 j k_2} - p_{i_2 j k_1} p_{i_1 j k_2})$$

$$\stackrel{?}{\supseteq} (p_{i_1 j_1 k_1} p_{i_2 j_2 k_2} - p_{i_2 j_1 k_1} p_{i_1 j_2 k_2})$$

If the probability density is positive everywhere, then the intersection axiom holds. ([DSS '08] discrete; [Pearl '09] continuous)

Question

What weaker conditions on positivity suffice?

Α

ex Fink	The intersection property for CI	
---------	----------------------------------	--

The intersection axiom

[Pearl-Paz '87] How to capture the combinatorics of the sets of CI statements that hold of some distribution? (semigraphoids, graphoids)

The intersection axiom *almost* holds:

$$X_1 \perp \!\!\!\perp X_2 \mid X_3, \ X_1 \perp \!\!\!\perp X_3 \mid X_2 \stackrel{?}{\Longrightarrow} X_1 \perp (X_2, X_3)$$

i.e.

$$\begin{aligned} \mathcal{I} &:= (p_{i_1 j_1 k} p_{i_2 j_2 k} - p_{i_2 j_1 k} p_{i_1 j_2 k}, \ p_{i_1 j k_1} p_{i_2 j k_2} - p_{i_2 j k_1} p_{i_1 j k_2}) \\ &\stackrel{?}{\supseteq} (p_{i_1 j_1 k_1} p_{i_2 j_2 k_2} - p_{i_2 j_1 k_1} p_{i_1 j_2 k_2}) \end{aligned}$$

If the probability density is positive everywhere, then the intersection axiom holds. ([DSS '08] discrete; [Pearl '09] continuous)

Question

What weaker conditions on positivity suffice?

Α

ex Fink	The intersection	on property for O
---------	------------------	-------------------

The intersection axiom

[Pearl-Paz '87] How to capture the combinatorics of the sets of CI statements that hold of some distribution? (semigraphoids, graphoids)

The intersection axiom *almost* holds:

$$X_1 \perp \!\!\!\perp X_2 \mid X_3, \ X_1 \perp \!\!\!\perp X_3 \mid X_2 \stackrel{?}{\Longrightarrow} X_1 \perp (X_2, X_3)$$

In fact

$$\begin{split} \sqrt{\mathcal{I}} &= \sqrt{(p_{i_1j_1k} p_{i_2j_2k} - p_{i_2j_1k} p_{i_1j_2k}, p_{i_1jk_1} p_{i_2jk_2} - p_{i_2jk_1} p_{i_1jk_2})} \\ & \not\supseteq (p_{i_1j_1k_1} p_{i_2j_2k_2} - p_{i_2j_1k_1} p_{i_1j_2k_2}) \end{split}$$

If the probability density is positive everywhere, then the intersection axiom holds. ([DSS '08] discrete; [Pearl '09] continuous)

Question

What weaker conditions on positivity suffice?

Question

[Drton-Sturmfels-Sullivant '08] What are the primary components of

 $\mathcal{I} = (p_{i_1 j_1 k} p_{i_2 j_2 k} - p_{i_2 j_1 k} p_{i_1 j_2 k}, p_{i_1 j k_1} p_{i_2 j k_2} - p_{i_2 j k_1} p_{i_1 j k_2})?$

One of them is the ideal of $X_1 \perp \!\!\perp X_2 \mid X_3$:

$$\mathcal{I}:(p_{111}\cdots p_{|\Omega_1|,|\Omega_2|,|\Omega_3|})^{\infty}=(p_{i_1j_1k_1}p_{i_2j_2k_2}-p_{i_2j_1k_1}p_{i_1j_2k_2}).$$

The other components will be binomial ideals as well [Eisenbud–Sturmfels '96].

Moral theorem

If $X_A \perp X_B \mid X_{C \cup D}$ and $X_A \perp X_C \mid X_{B \cup D}$, then $X_A \perp X_{B \cup C} \mid (X_D, \mathscr{C})$, where \mathscr{C} is the "connected component" of $supp(X_{B \cup C})$ containing $x_{B \cup C}$.

Question

[Drton-Sturmfels-Sullivant '08] What are the primary components of

 $\mathcal{I} = (p_{i_1 j_1 k} p_{i_2 j_2 k} - p_{i_2 j_1 k} p_{i_1 j_2 k}, p_{i_1 j k_1} p_{i_2 j k_2} - p_{i_2 j k_1} p_{i_1 j k_2})?$

One of them is the ideal of $X_1 \perp \!\!\!\perp X_2 \mid X_3$:

$$\mathcal{I}: (p_{111}\cdots p_{|\Omega_1|,|\Omega_2|,|\Omega_3|})^{\infty} = (p_{i_1j_1k_1}p_{i_2j_2k_2} - p_{i_2j_1k_1}p_{i_1j_2k_2}).$$

The other components will be binomial ideals as well [Eisenbud–Sturmfels '96].

Moral theorem

If $X_A \perp X_B \mid X_{C \cup D}$ and $X_A \perp X_C \mid X_{B \cup D}$, then $X_A \perp X_{B \cup C} \mid (X_D, \mathscr{C})$, where \mathscr{C} is the "connected component" of $\operatorname{supp}(X_{B \cup C})$ containing $x_{B \cup C}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = うのの

Question

[Drton-Sturmfels-Sullivant '08] What are the primary components of

 $\mathcal{I} = (p_{i_1 j_1 k} p_{i_2 j_2 k} - p_{i_2 j_1 k} p_{i_1 j_2 k}, p_{i_1 j k_1} p_{i_2 j k_2} - p_{i_2 j k_1} p_{i_1 j k_2})?$

One of them is the ideal of $X_1 \perp \!\!\!\perp X_2 \mid X_3$:

$$\mathcal{I}: (p_{111}\cdots p_{|\Omega_1|,|\Omega_2|,|\Omega_3|})^{\infty} = (p_{i_1j_1k_1}p_{i_2j_2k_2} - p_{i_2j_1k_1}p_{i_1j_2k_2}).$$

The other components will be binomial ideals as well [Eisenbud–Sturmfels '96].

Moral theorem

If $X_A \perp \!\!\!\perp X_B \mid X_{C \cup D}$ and $X_A \perp \!\!\!\perp X_C \mid X_{B \cup D}$, then $X_A \perp \!\!\!\perp X_{B \cup C} \mid (X_D, \mathscr{C})$, where \mathscr{C} is the "connected component" of $supp(X_{B \cup C})$ containing $x_{B \cup C}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

The primary decomposition of ${\mathcal I}$

Theorem (Fink '11); conjecture (Cartwright, Engström)

 \mathcal{I} has the primary decomposition $\mathcal{I} = \bigcap_{G} P_{G}$ running over admissible graphs G.

Each P_G is prime, so \mathcal{I} is radical.

A bipartite graph on $\Omega_2 \amalg \Omega_3$ is *admissible* if adding any edge unites two connected components.

$$P_{G} = (p_{i_{1}j_{1}k_{1}}p_{i_{2}j_{2}k_{2}} - p_{i_{2}j_{1}k_{1}}p_{i_{1}j_{2}k_{2}} :$$

(j₁, k₁) and (j₂, k₂) \in G connected)
+ (p_{i_{1}k} : (j, k) \notin G)

Right: the tensor (p_{ijk}) viewed along the *i* direction.

The primary decomposition of $\ensuremath{\mathcal{I}}$

Theorem (Fink '11); conjecture (Cartwright, Engström)

 \mathcal{I} has the primary decomposition $\mathcal{I} = \bigcap_{G} P_{G}$ running over admissible graphs G.

Each P_G is prime, so \mathcal{I} is radical.

A bipartite graph on $\Omega_2 \amalg \Omega_3$ is *admissible* if adding any edge unites two connected components.

 $P_{G} = (p_{i_{1}j_{1}k_{1}}p_{i_{2}j_{2}k_{2}} - p_{i_{2}j_{1}k_{1}}p_{i_{1}j_{2}k_{2}}:$ $(j_{1}, k_{1}) \text{ and } (j_{2}, k_{2}) \in G \text{ connected}$ $+ (p_{ijk}: (j, k) \notin G)$

Right: the tensor (p_{ijk}) viewed along the *i* direction.

The primary decomposition of $\ensuremath{\mathcal{I}}$

Theorem (Fink '11); conjecture (Cartwright, Engström)

 \mathcal{I} has the primary decomposition $\mathcal{I} = \bigcap_{G} P_{G}$ running over admissible graphs G.

Each P_G is prime, so \mathcal{I} is radical.

A bipartite graph on $\Omega_2 \amalg \Omega_3$ is *admissible* if adding any edge unites two connected components.

$$P_{G} = (p_{i_{1}j_{1}k_{1}}p_{i_{2}j_{2}k_{2}} - p_{i_{2}j_{1}k_{1}}p_{i_{1}j_{2}k_{2}} :$$

(j₁, k₁) and (j₂, k₂) \in G connected)
+ (p_{ijk} : (j, k) \notin G)

Right: the tensor (p_{ijk}) viewed along the *i* direction.

Theorem

$\mathcal{I} = \bigcap_{\mathcal{G} \text{ admissible}} P_{\mathcal{G}}$

• $\mathcal{I} \subseteq each P_G$ \checkmark

► For \supseteq : Let deg $p_{ijk} = e_{jk}$. Let G(d) = support of $d \in \mathbb{N}^{\Omega_2 \times \Omega_3}$.

Key fact about connectedness

Let f be a monomial multiple of $p_{i_1j_1k_1}p_{i_2j_2k_2} - p_{i_2j_1k_1}p_{i_1j_2k_2}$. Then $f \in \mathcal{I} \iff (j_1, k_1)$ and (j_2, k_2) are connected in $G(\deg f)$.

Let $\overline{G(d)}$ be an "admissible closure" of G(d). Claim. $P_{\overline{G(d)}}$ has the smallest multidegree d piece of any P_G .

$$(\mathcal{I})_d \stackrel{?}{\supseteq} (P_{\overline{G(d)}})_d \stackrel{?}{\supseteq} (\bigcap_{C} P_G)_d$$

Theorem

$$\mathcal{I} = \bigcap_{G \text{ admissible}} P_G$$

•
$$\mathcal{I} \subseteq each P_G \quad \checkmark$$

► For \supseteq : Let deg $p_{ijk} = e_{jk}$. Let G(d) = support of $d \in \mathbb{N}^{\Omega_2 \times \Omega_3}$.

Key fact about connectedness

Let f be a monomial multiple of $p_{i_1j_1k_1}p_{i_2j_2k_2} - p_{i_2j_1k_1}p_{i_1j_2k_2}$. Then $f \in \mathcal{I} \iff (j_1, k_1)$ and (j_2, k_2) are connected in $G(\deg f)$.

Let $\overline{G(d)}$ be an "admissible closure" of G(d). Claim. $P_{\overline{G(d)}}$ has the smallest multidegree d piece of any P_G .

$$(\mathcal{I})_d \stackrel{\checkmark}{\supseteq} (P_{\overline{G(d)}})_d \stackrel{?}{\supseteq} (\bigcap_{G(d)} P_G)_d$$

・ロト・(型)・(目)・(目)・(目)・(の)へ()

Theorem

$$\mathcal{I} = \bigcap_{G \text{ admissible}} P_G$$

• $\mathcal{I} \subseteq each P_G \checkmark$

► For \supseteq : Let deg $p_{ijk} = e_{jk}$. Let G(d) = support of $d \in \mathbb{N}^{\Omega_2 \times \Omega_3}$.

Key fact about connectedness

Let f be a monomial multiple of $p_{i_1j_1k_1}p_{i_2j_2k_2} - p_{i_2j_1k_1}p_{i_1j_2k_2}$. Then $f \in \mathcal{I} \iff (j_1, k_1)$ and (j_2, k_2) are connected in $G(\deg f)$.

Let $\overline{G(d)}$ be an "admissible closure" of G(d). Claim. $P_{\overline{G(d)}}$ has the smallest multidegree d piece of any P_G .

$$(\mathcal{I})_{d} \stackrel{\checkmark}{\supseteq} (P_{\overline{G(d)}})_{d} \stackrel{?}{\supseteq} (\bigcap_{G} P_{G})_{d}$$

Proof continued: an initial degeneration

By Hilbert function arguments, we may take an initial degeneration.

$$(\operatorname{in} P_{\overline{G(d)}})_d \stackrel{?}{\supseteq} \bigcap_G (\operatorname{in} P_G)_d \supseteq \left(\operatorname{in} \bigcap_G P_G\right)_d$$

[Sturmfels '91] on ideals of 2×2 minors:

- For any term order, in P_G is a squarefree monomial ideal.
- Ideals in $P_G \longleftrightarrow$ triangulations of products of simplices.
- For graded revlex order, our generators for P_G are a GB.

But this does not produce a Gröbner basis for \mathcal{I}_{0} , $\mathcal{I}_{$

Proof continued: an initial degeneration

By Hilbert function arguments, we may take an initial degeneration.

$$(\operatorname{in} P_{\overline{G(d)}})_d \stackrel{?}{\supseteq} \bigcap_G (\operatorname{in} P_G)_d \supseteq \left(\operatorname{in} \bigcap_G P_G\right)_d$$

[Sturmfels '91] on ideals of 2×2 minors:

- For any term order, in P_G is a squarefree monomial ideal.
- ▶ Ideals in $P_G \longleftrightarrow$ triangulations of products of simplices.
- For graded revlex order, our generators for P_G are a GB.

But this does not produce a Gröbner basis for \mathcal{I}_{0} , $\mathcal{I}_{$

Proof continued: an initial degeneration

By Hilbert function arguments, we may take an initial degeneration.

$$(\operatorname{in} P_{\overline{G(d)}})_d \stackrel{?}{\supseteq} \bigcap_G (\operatorname{in} P_G)_d \supseteq \left(\operatorname{in} \bigcap_G P_G\right)_d$$

[Sturmfels '91] on ideals of 2×2 minors:

- For any term order, in P_G is a squarefree monomial ideal.
- ▶ Ideals in $P_G \longleftrightarrow$ triangulations of products of simplices.
- For graded revlex order, our generators for P_G are a GB.

Corollary

in
$$\mathcal{I} = \bigcap$$
 in P_G .

But this does not produce a Gröbner basis for \mathcal{I}_{a}

Alex Fink	The intersection property for CI	10 / 15
-----------	----------------------------------	---------

Generalisation: binomial edge ideals

The binomial edge ideal of a graph G is

$$J_{G} = (x_{i}y_{j} - x_{j}y_{i} : (i,j) \in G) \subseteq \mathbb{K}[x_{i}, y_{i} : i \in V(G)].$$

If $|\Omega_1| = 2$, then \mathcal{I} and its components are binomial edge ideals. So is any CI ideal $X_1 \perp \!\!\!\perp X_B \mid X_{[n] \setminus B \setminus 1}$.

Theorems (Herzog-Hibi-Hreinsdóttir-Kahle-Rauh '10; Ohtani '11)

One can give explicitly

- a decomposition of J_G into prime ideals
- ▶ a Gröbner basis for *J_G* in lex order (sometimes quadratic)
- a sufficient condition for J_G to be Cohen-Macaulay

(Our \mathcal{I} is not CM, and its GB is not quadratic.)

Damadi–Rahmati '16, Banerjee–Núñez-Betancourt '17, de Alba–Hoang 'xx...

Generalisation: binomial edge ideals

The binomial edge ideal of a graph G is

$$J_G = (x_i y_j - x_j y_i : (i, j) \in G) \subseteq \mathbb{K}[x_i, y_i : i \in V(G)].$$

If $|\Omega_1| = 2$, then \mathcal{I} and its components are binomial edge ideals. So is any CI ideal $X_1 \perp \!\!\!\perp X_B \mid X_{[n] \setminus B \setminus 1}$.

Theorems (Herzog-Hibi-Hreinsdóttir-Kahle-Rauh '10; Ohtani '11)

One can give explicitly

- a decomposition of J_G into prime ideals
- ▶ a Gröbner basis for *J_G* in lex order (sometimes quadratic)
- a sufficient condition for J_G to be Cohen-Macaulay

(Our \mathcal{I} is not CM, and its GB is not quadratic.)

Damadi–Rahmati '16, Banerjee–Núñez-Betancourt '17, de Alba–Hoang 'xx...

Alex Fink	The intersection property for CI	11 / 15
-----------	----------------------------------	---------

[Rauh–Ay '11] Let \mathcal{R} be any set of CI statements

 $X_1 \perp \!\!\!\perp X_B \mid X_{[n] \setminus B \setminus 1}$

and $\mathcal{I}_{\mathcal{R}}$ its ideal.

Application: Robustness. Does output random variable X_1 have unchanged distribution if inputs X_B are "disabled"?

Theorems

*I*_R is an intersection of primes, one for each subgraph maximal for its connected components.
 (⇒ moral theorem)

• Explicit reduced GB for $\mathcal{I}_{\mathcal{R}}$.

・ロット (雪) () () () ()

[Rauh–Ay '11] Let \mathcal{R} be any set of CI statements

 $X_1 \perp \!\!\!\perp X_B \mid X_{[n] \setminus B \setminus 1}$

and $\mathcal{I}_{\mathcal{R}}$ its ideal.

Application: Robustness. Does output random variable X_1 have unchanged distribution if inputs X_B are "disabled"?

Theorems

- *I*_R is an intersection of primes, one for each subgraph maximal for its connected components. (⇒ moral theorem)
- Explicit reduced GB for $\mathcal{I}_{\mathcal{R}}$.

[Swanson–Taylor '12] consider the ideal $\mathcal{I}^{(t)}$ of

$$\{X_i \perp X_j \mid X_{[n]\setminus\{i,j\}}: i \leq t, j \leq n\}.$$

Ay–Rauh subsumes t = 1. \mathcal{I} is the case t = 1, n = 3.

Theorems

One can give explicitly

the minimal primes of *I*^(t). It is no longer radical!
 The primes are subsets maximal for their connected components.

Gröbner bases for the binomial parts of the minimal primes.

The full-support component is $\{X_i \perp X_{[n]\setminus i} : i \leq t\}$.

イロト 不得下 イヨト イヨト

[Swanson–Taylor '12] consider the ideal $\mathcal{I}^{(t)}$ of

$$\{X_i \perp X_j \mid X_{[n]\setminus\{i,j\}}: i \leq t, j \leq n\}.$$

Ay–Rauh subsumes t = 1. \mathcal{I} is the case t = 1, n = 3.

Theorems

One can give explicitly

- the minimal primes of *I*^(t). It is no longer radical!
 The primes are subsets maximal for their connected components.
- Gröbner bases for the binomial parts of the minimal primes.

The full-support component is $\{X_i \perp X_{[n]\setminus i} : i \leq t\}$.

Continuous distributions

Let p be a continuous probability density on the metric space Ω .

Theorem (Peters '14)

If $X_A \perp \!\!\!\perp X_B \mid X_{C \cup D}$ and $X_A \perp \!\!\!\perp X_C \mid X_{B \cup D}$, then $X_A \perp \!\!\!\perp X_{B \cup C} \mid (X_D, \mathscr{C})$ where \mathscr{C} is the component of $\{(b, c) : p(b, c, d) > 0\}$ containing $x_{B \cup C}$.

Let
$$\{\mathscr{C}_{B,i}\}_{i=1}^{k}$$
 and $\{\mathscr{C}_{C,i}\}_{i=1}^{k}$ be families of minimal disjoint sets s.t.
 $\{(b,c): p(b,c,d) > 0\} \subseteq \bigcup_{i} (\mathscr{C}_{B,i} \times \mathscr{C}_{C,i}).$

The $\mathscr{C}_{B,i} \times \mathscr{C}_{C,i}$ are the components.

Selected references

- ► A Fink, The binomial ideal of the intersection axiom for conditional probabilities, J. of Algebraic Combinatorics **33** issue 3 (2011), 455–463.
- J Herzog, T Hibi, F Hreinsdóttir, T Kahle, J Rauh, *Binomial edge ideals and conditional independence statements*, Advances in Applied Mathematics 45 no. 3 (2010), 317–333.
- M Ohtani, Graphs and ideals generated by some 2-minors, Communications in Algebra 39, no. 3 (2011), 905–917.
- ▶ J Peters, On the intersection property of conditional independence and its application to causal discovery, J. of Causal Inference **3** (2015), 97–108.
- ► J Rauh, N Ay, *Robustness and conditional independence ideals*, arXiv:1110.1338.
- I Swanson, A Taylor, Minimal primes of ideals arising from conditional independence statements, J. Algebra 392 (2013), 299–314.

l ha	nks!	
	・ロト ・四ト ・ヨト ・ヨト	E
Alex Fink	The intersection property for CI	15 / 15