The intersection property for conditional independence

Alex Fink
Queen Mary University of London

Algebraic Methods in Statistics
Osnabrück, Advent 2017

Conditional independence

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random var with outcomes $\Omega=\prod_{i=1}^{n} \Omega_{i}$. Write $X_{A}=\left(X_{i}\right)_{i \in A}$, etc.

Let A, B, C be disjoint subsets of the index set $[n]$. The conditional independence (" Cl ") statement

$$
X_{A} \Perp X_{B} \mid X_{C}
$$

asserts of X that

$$
\mathbf{P}\left(x_{A}=a, x_{B}=b \mid x_{C}=c\right)=\mathbf{P}\left(x_{A}=a \mid x_{C}=c\right) \cdot \mathbf{P}\left(x_{B}=b \mid x_{C}=c\right)
$$

i.e.
$\mathbf{P}\left(x_{A}=a, x_{B}=b, x_{C}=c\right) \mathbf{P}\left(x_{C}=c\right)=\mathbf{P}\left(x_{A}=a, x_{C}=c\right) \mathbf{P}\left(x_{B}=b, x_{C}=c\right)$
for all $a \in \Omega_{A}, b \in \Omega_{B}$, and $c \in \operatorname{supp} X_{c}$.

Why CI?

Cl is important in understanding observed data:

- identifying irrelevant variables, for dimensionality reduction
- inference of causal relationships

The first attempt to capture all the Cl relationships in a dataset was through graphs, each edge being an "atomic" causation

But this is insufficiently general: not all distributions have a graph.

Why CI?

Cl is important in understanding observed data:

- identifying irrelevant variables, for dimensionality reduction
- inference of causal relationships

The first attempt to capture all the Cl relationships in a dataset was through graphs, each edge being an "atomic" causation.
$X_{i} \Perp X_{j} \mid X_{A}$ iff all paths are like:

But this is insufficiently general: not all distributions have a graph.

Why CI?

Cl is important in understanding observed data:

- identifying irrelevant variables, for dimensionality reduction
- inference of causal relationships

The first attempt to capture all the Cl relationships in a dataset was through graphs, each edge being an "atomic" causation.
$X_{i} \Perp X_{j} \mid X_{A}$ iff all paths are like:

But this is insufficiently general: not all distributions have a graph.

Discrete distributions

Let X be discrete with outcome probabilities $p_{a b c z}=\mathbf{P}\left(x_{A}=a, \ldots\right)$.
The Cl statement

$$
X_{A} \Perp X_{B} \mid X_{C}
$$

says that one gets a rank 1 matrix from the tensor ($p_{a b c d}$) by

- flattening in the $A \times B$ direction;
- slicing in the C direction;
- marginalising in the $Z=[n] \backslash(A \cup B \cup C)$ direction.

The ideal of $X_{A} \Perp X_{B} \mid X_{C}$ is

$$
\left(p_{a_{1} b_{1} c+} p_{a_{2} b_{2} c+}-p_{a_{1} b_{2} c+} p_{a_{2} b_{1} c+}\right)
$$

where $p_{a b c+}=\sum_{z} p_{a b c z}$.

Combinatorics of conditional independence

[Pearl-Paz '87] How to capture the combinatorics of the sets of Cl statements that hold of some distribution?

Semigraphoids, defined by four conditional independence axioms.
Symmetry $X_{A} \Perp X_{B}\left|X_{C} \Longrightarrow X_{B} \Perp X_{A}\right| X_{C}$
Decomposition $X_{A} \Perp X_{B \cup C}\left|X_{D} \Longrightarrow X_{A} \Perp X_{B}\right| X_{D}$
Weak union $X_{A} \Perp X_{B \cup C}\left|X_{D} \Longrightarrow X_{A} \Perp X_{B}\right| X_{C \cup D}$
Contraction $\left(X_{A} \Perp X_{B} \mid X_{C \cup D}\right.$ and $\left.X_{A} \Perp X_{C} \mid X_{D}\right) \Longrightarrow$

$$
X_{A} \Perp X_{B \cup C} \mid X_{D}
$$

(These don't completely characterise distributions; no finite list of axioms can. But they are the complete list with ≤ 2 conjuncts. [Studený '92, '97])
[Pearl-Paz '87] How to capture the combinatorics of the sets of Cl statements that hold of some distribution? (semigraphoids, graphoids)

The intersection axiom almost holds:

$$
X_{A} \Perp X_{B}\left|X_{C \cup D}, X_{A} \Perp X_{C}\right| X_{B \cup D} \stackrel{?}{\Longrightarrow} X_{A} \Perp X_{B \cup C} \mid X_{D}
$$

Let's analyse it in the discrete case.

If the probability density is positive everywhere, then the intersection axiom holds. ([DSS '08] discrete; [Pearl '09] continuous)
\square
What weaker conditions on positivity suffice?
[Pearl-Paz '87] How to capture the combinatorics of the sets of Cl statements that hold of some distribution? (semigraphoids, graphoids)

The intersection axiom almost holds:

$$
x_{1} \Perp X_{2}\left|x_{3}, x_{1} \Perp X_{3}\right| X_{2} \stackrel{?}{\Longrightarrow} x_{1} \Perp\left(X_{2}, x_{3}\right)
$$

i.e.

$$
\begin{aligned}
\mathcal{I} & :=\left(p_{i_{1} j_{1} k} p_{i_{2} j_{2} k}-p_{i_{2} j_{1} k} p_{i_{1} j_{2} k}, p_{i_{1} j k_{1}} p_{i_{2} j k_{2}}-p_{i_{2} j k_{1}} p_{i_{1} j k_{2}}\right) \\
& \stackrel{?}{?}\left(p_{i_{1} j_{1} k_{1}} p_{i_{2} j_{2} k_{2}}-p_{i_{2} j_{1} k_{1}} p_{i_{1} j_{2} k_{2}}\right)
\end{aligned}
$$

If the probability density is positive everywhere, then the intersection axiom holds.

The intersection axiom

[Pearl-Paz '87] How to capture the combinatorics of the sets of Cl statements that hold of some distribution? (semigraphoids, graphoids)

The intersection axiom almost holds:

$$
x_{1} \Perp X_{2}\left|x_{3}, x_{1} \Perp x_{3}\right| X_{2} \stackrel{?}{\Longrightarrow} x_{1} \Perp\left(X_{2}, x_{3}\right)
$$

In fact

$$
\begin{aligned}
\sqrt{\mathcal{I}} & =\sqrt{\left(p_{i_{1} j_{1} k} p_{i_{2} j_{2} k}-p_{i_{2} j_{1} k} p_{i_{1} j_{2} k}, p_{i_{1} k_{1}} p_{i_{2} k_{2}}-p_{i_{2 j} k_{1}} p_{i_{1} j k_{2}}\right)} \\
& \nsupseteq\left(p_{i_{1} j_{1} k_{1}} p_{i_{2} j_{2} k_{2}}-p_{i_{2} k_{1} k_{1}} p_{i_{1} j_{2} k_{2}}\right)
\end{aligned}
$$

If the probability density is positive everywhere, then the intersection axiom holds. ([DSS '08] discrete; [Pearl '09] continuous)

Question

What weaker conditions on positivity suffice?

Analysing the discrete case

Question
[Drton-Sturmfels-Sullivant '08] What are the primary components of

$$
\mathcal{I}=\left(p_{i_{1} j_{1} k} p_{i_{2} j_{2} k}-p_{i_{2} j_{1} k} p_{i_{1} j_{2} k}, p_{i_{1} j k_{1}} p_{i_{2} j k_{2}}-p_{i_{2 j} k_{1}} p_{i_{1} j k_{2}}\right) ?
$$

One of them is the ideal of $X_{1} \Perp X_{2} \mid X_{3}$:

$$
I:\left(p_{111} \cdots p_{\Omega_{1}\left|, \Omega_{2},\left|\Omega_{3}\right|\right.}\right)^{\infty}=\left(p_{11} j_{1} k_{1} p_{i 2} j_{2} k_{2}-p_{i 2 j_{1} k_{1}} p_{11} j_{2} k_{2}\right) .
$$

The other components will be binomial ideals as well
\square

Analysing the discrete case

Question

[Drton-Sturmfels-Sullivant '08] What are the primary components of

$$
\mathcal{I}=\left(p_{i_{1} j_{1} k} p_{i_{2} j_{2} k}-p_{i_{2} j_{1} k} p_{i_{1} j_{2} k}, p_{i_{1} j k_{1}} p_{i_{2} j k_{2}}-p_{i_{2 j k_{1}}} p_{i_{1} j k_{2}}\right) ?
$$

One of them is the ideal of $X_{1} \Perp X_{2} \mid X_{3}$:

$$
\mathcal{I}:\left(p_{111} \cdots p_{\left|\Omega_{1}\right|, \Omega_{2}\left|, \Omega_{3}\right|}\right)^{\infty}=\left(p_{i_{1} j_{1} k_{1}} p_{i_{2} j_{2} k_{2}}-p_{i_{2} j_{1} k_{1}} p_{i_{1} j_{2} k_{2}}\right) .
$$

The other components will be binomial ideals as well [Eisenbud-Sturmfels '96].

Analysing the discrete case

Question

[Drton-Sturmfels-Sullivant '08] What are the primary components of

$$
\mathcal{I}=\left(p_{i_{1} j_{1} k} p_{i_{2} j_{2} k}-p_{i_{2} j_{1} k} p_{i_{1} j_{2} k}, p_{i_{1} j k_{1}} p_{i_{2} j k_{2}}-p_{i_{2} k_{1}} p_{i_{1} j k_{2}}\right) ?
$$

One of them is the ideal of $X_{1} \Perp X_{2} \mid X_{3}$:

$$
\mathcal{I}:\left(p_{111} \cdots p_{\left|\Omega_{1}\right|, \Omega_{2}\left|,\left|\Omega_{3}\right|\right.}\right)^{\infty}=\left(p_{i_{1} j_{1} k_{1}} p_{i_{2} j_{2} k_{2}}-p_{i_{2} j_{1} k_{1}} p_{i_{1} j_{2} k_{2}}\right) .
$$

The other components will be binomial ideals as well [Eisenbud-Sturmfels '96].

Moral theorem

If $X_{A} \Perp X_{B} \mid X_{C \cup D}$ and $X_{A} \Perp X_{C} \mid X_{B \cup D}$, then $X_{A} \Perp X_{B \cup C} \mid\left(X_{D}, \mathscr{C}\right)$, where \mathscr{C} is the "connected component" of $\operatorname{supp}\left(X_{B \cup C}\right)$ containing $x_{B \cup C}$.

The primary decomposition of \mathcal{I}

Theorem (Fink '11); conjecture (Cartwright, Engström)
\mathcal{I} has the primary decomposition $\mathcal{I}=\bigcap_{G} P_{G} \quad$ running over admissible graphs G.

Each P_{G} is prime, so \mathcal{I} is radical.
A bipartite graph on $\Omega_{2} \amalg \Omega_{3}$ is admissible if
adding any edge unites two connected
components.

Right: the tensor ($p_{i j k}$) viewed along the i
direction

The primary decomposition of \mathcal{I}

Theorem (Fink '11); conjecture (Cartwright, Engström)
\mathcal{I} has the primary decomposition $\quad \mathcal{I}=\bigcap_{G} P_{G} \quad$ running over admissible graphs G.

Each P_{G} is prime, so \mathcal{I} is radical.
A bipartite graph on $\Omega_{2} \amalg \Omega_{3}$ is admissible if adding any edge unites two connected components.

Right: the tensor ($p_{i j k}$) viewed along the i
direction

The primary decomposition of \mathcal{I}

Theorem (Fink '11); conjecture (Cartwright, Engström)
\mathcal{I} has the primary decomposition $\quad \mathcal{I}=\bigcap_{G} P_{G} \quad$ running over admissible graphs G.

Each P_{G} is prime, so \mathcal{I} is radical.
A bipartite graph on $\Omega_{2} \amalg \Omega_{3}$ is admissible if adding any edge unites two connected components.

$$
\begin{aligned}
& P_{G}=\left(p_{i_{1} j_{1} k_{1}} p_{i_{2} j_{2} k_{2}}-p_{i_{2} j_{1} k_{1}} p_{i_{1} j_{2} k_{2}}:\right. \\
& \left.\quad\left(j_{1}, k_{1}\right) \text { and }\left(j_{2}, k_{2}\right) \in G \text { connected }\right) \\
& \quad+\left(p_{i j k}:(j, k) \notin G\right)
\end{aligned}
$$

Right: the tensor ($p_{i j k}$) viewed along the i direction.

Theorem

$$
\mathcal{I}=\bigcap_{G} \text { admissible } P_{G}
$$

- $\mathcal{I} \subseteq$ each $P_{G} \quad \checkmark$
- For \supseteq : Let deg $p_{i j k}=e_{j k}$. Let $G(d)=$ support of $d \in \mathbb{N}^{\Omega_{2} \times \Omega_{3}}$

Key fact about connectedness
Let f be a monomial multiple of $p_{i 1} j_{1} k_{1} p_{i 2} j_{2} k_{2}-p_{i 2} j_{1} k_{1} p_{i 1} j_{2} k_{2}$
Then $f \in \mathcal{I} \Longleftrightarrow\left(j_{1}, k_{1}\right)$ and $\left(j_{2}, k_{2}\right)$ are connected in $G(\operatorname{deg} f)$.
Let $\overline{G(d)}$ be an "admissible closure" of $G(d)$.
Claim. $P_{\overline{G(d)}}$ has the smallest multidegree d piece of any P_{G}

$$
(\mathcal{I})_{d} \xlongequal[?]{?}\left(P_{\overline{G(d)}}\right)_{d} \supseteq\left(\bigcap_{G} P_{G}\right)_{d}
$$

Theorem

$$
\mathcal{I}=\bigcap_{G} \text { admissible } P_{G}
$$

- $\mathcal{I} \subseteq$ each P_{G}
- For \supseteq : Let $\operatorname{deg} p_{i j k}=e_{j k}$. Let $G(d)=$ support of $d \in \mathbb{N}^{\Omega_{2} \times \Omega_{3}}$.

Key fact about connectedness
Let f be a monomial multiple of $p_{i_{1} j_{1} k_{1}} p_{i_{2} j_{2} k_{2}}-p_{i_{2} j_{1} k_{1}} p_{i_{1} j_{2} k_{2}}$. Then $f \in \mathcal{I} \Longleftrightarrow\left(j_{1}, k_{1}\right)$ and $\left(j_{2}, k_{2}\right)$ are connected in $G(\operatorname{deg} f)$.

Let $\overline{G(d)}$ be an "admissible closure" of $G(d)$.
Claim. $P_{\overline{G(d)}}$ has the smallest multidegree d piece of any P_{G}.

Theorem

$$
\mathcal{I}=\bigcap_{G} \text { admissible } P_{G}
$$

- $\mathcal{I} \subseteq$ each P_{G}
- For \supseteq : Let $\operatorname{deg} p_{i j k}=e_{j k}$. Let $G(d)=$ support of $d \in \mathbb{N}^{\Omega_{2} \times \Omega_{3}}$.

Key fact about connectedness

Let f be a monomial multiple of $p_{i_{1} j_{1} k_{1}} p_{i_{2} j_{2} k_{2}}-p_{i_{2} j_{1} k_{1}} p_{i_{1} j_{2} k_{2}}$. Then $f \in \mathcal{I} \Longleftrightarrow\left(j_{1}, k_{1}\right)$ and $\left(j_{2}, k_{2}\right)$ are connected in $G(\operatorname{deg} f)$.

Let $\overline{G(d)}$ be an "admissible closure" of $G(d)$.
Claim. $P_{\overline{G(d)}}$ has the smallest multidegree d piece of any P_{G}.

$$
(\mathcal{I})_{d} \supseteq\left(P_{\overline{G(d)}}\right)_{d} \supseteq\left(\bigcap_{G} P_{G}\right)_{d}
$$

By Hilbert function arguments, we may take an initial degeneration.

$$
\left(\operatorname{in} P_{\overline{G(d)}}\right)_{d} \stackrel{?}{\supseteq} \bigcap_{G}\left(\operatorname{in} P_{G}\right)_{d} \supseteq\left(\operatorname{in} \bigcap_{G} P_{G}\right)_{d}
$$

```
    on ideals of 2 }\times2\mathrm{ minors:
* For any term order, in PG is a squarefree monomial ideal.
* Ideals in P}\mp@subsup{P}{G}{}\longleftrightarrow\mathrm{ triangulations of products of simplices.
- For graded revlex order, our generators for }\mp@subsup{P}{G}{}\mathrm{ are a GB.
```


Proof continued: an initial degeneration

By Hilbert function arguments, we may take an initial degeneration.

$$
\left(\text { in } P_{\overline{G(d)}}\right)_{d} \xlongequal{\supseteq} \bigcap_{G}\left(\text { in } P_{G}\right)_{d} \supseteq\left(\operatorname{in} \bigcap_{G} P_{G}\right)_{d}
$$

[Sturmfels '91] on ideals of 2×2 minors:

- For any term order, in P_{G} is a squarefree monomial ideal.
- Ideals in $P_{G} \longleftrightarrow$ triangulations of products of simplices.
- For graded revlex order, our generators for P_{G} are a GB.

Proof continued: an initial degeneration

By Hilbert function arguments, we may take an initial degeneration.

$$
\left(\operatorname{in} P_{\overline{G(d)}}\right)_{d} \stackrel{?}{\supseteq} \bigcap_{G}\left(\operatorname{in} P_{G}\right)_{d} \supseteq\left(\operatorname{in} \bigcap_{G} P_{G}\right)_{d}
$$

[Sturmfels '91] on ideals of 2×2 minors:

- For any term order, in P_{G} is a squarefree monomial ideal.
- Ideals in $P_{G} \longleftrightarrow$ triangulations of products of simplices.
- For graded revlex order, our generators for P_{G} are a GB.

Corollary

$$
\text { in } \mathcal{I}=\bigcap \text { in } P_{G} .
$$

But this does not produce a Gröbner basis for \mathcal{I}.

Generalisation: binomial edge ideals

The binomial edge ideal of a graph G is

$$
J_{G}=\left(x_{i} y_{j}-x_{j} y_{i}:(i, j) \in G\right) \subseteq \mathbb{K}\left[x_{i}, y_{i}: i \in V(G)\right]
$$

If $\left|\Omega_{1}\right|=2$, then \mathcal{I} and its components are binomial edge ideals.
So is any Cl ideal $X_{1} \Perp X_{B} \mid X_{[n] \backslash B \backslash 1}$.

One can give explicitly

- a Gröbner basis for J_{G} in lex order (sometimes quadratic) - a sufficient condition for J_{G} to be Cohen-Macaulay
(Our \mathcal{I} is not $C M$, and its GB is not quadratic.)
Damadi-Rahmati '16, Banerjee-Núñez-Betancourt

Generalisation: binomial edge ideals

The binomial edge ideal of a graph G is

$$
J_{G}=\left(x_{i} y_{j}-x_{j} y_{i}:(i, j) \in G\right) \subseteq \mathbb{K}\left[x_{i}, y_{i}: i \in V(G)\right]
$$

If $\left|\Omega_{1}\right|=2$, then \mathcal{I} and its components are binomial edge ideals.
So is any Cl ideal $X_{1} \Perp X_{B} \mid X_{[n] \backslash B \backslash 1}$.

Theorems (Herzog-Hibi-Hreinsdóttir-Kahle-Rauh '10; Ohtani '11)
One can give explicitly

- a decomposition of J_{G} into prime ideals
- a Gröbner basis for J_{G} in lex order (sometimes quadratic)
- a sufficient condition for J_{G} to be Cohen-Macaulay
(Our \mathcal{I} is not CM , and its GB is not quadratic.)
Damadi-Rahmati '16, Banerjee-Núñez-Betancourt '17, de Alba-Hoang 'xx....

Beyond the binary case

[Rauh-Ay '11] Let \mathcal{R} be any set of Cl statements

$$
X_{1} \Perp X_{B} \mid X_{[n] \backslash B \backslash 1}
$$

and $\mathcal{I}_{\mathcal{R}}$ its ideal.
Application: Robustness. Does output random variable X_{1} have unchanged distribution if inputs X_{B} are "disabled"?

- $\mathcal{I}_{\mathcal{R}}$ is an intersection of primes, one for each subgraph maximal
for its connected components.
- Explicit reduced GB for \mathcal{I}_{R}

Beyond the binary case

[Rauh-Ay '11] Let \mathcal{R} be any set of Cl statements

$$
X_{1} \Perp X_{B} \mid X_{[n] \backslash B \backslash 1}
$$

and $\mathcal{I}_{\mathcal{R}}$ its ideal.
Application: Robustness. Does output random variable X_{1} have unchanged distribution if inputs X_{B} are "disabled"?

Theorems

- $\mathcal{I}_{\mathcal{R}}$ is an intersection of primes, one for each subgraph maximal for its connected components.
- Explicit reduced GB for $\mathcal{I}_{\mathcal{R}}$.

Another generalisation

[Swanson-Taylor '12] consider the ideal $\mathcal{I}^{(t)}$ of

$$
\left\{X_{i} \Perp X_{j} \mid X_{[n] \backslash\{i, j\}}: i \leq t, j \leq n\right\} .
$$

Ay-Rauh subsumes $t=1 . \mathcal{I}$ is the case $t=1, n=3$.

Theorems
One can give explicitly

- the minimal primes of $\mathcal{I}^{(t)}$. It is no longer radical!

The primes are subsets maximal for their connected components.

- Gröbner bases for the binomial parts of the minimal primes.

Another generalisation

[Swanson-Taylor '12] consider the ideal $\mathcal{I}^{(t)}$ of

$$
\left\{X_{i} \Perp X_{j} \mid X_{[n] \backslash\{i, j\}}: i \leq t, j \leq n\right\} .
$$

Ay-Rauh subsumes $t=1 . \mathcal{I}$ is the case $t=1, n=3$.

Theorems

One can give explicitly

- the minimal primes of $\mathcal{I}^{(t)}$. It is no longer radical!

The primes are subsets maximal for their connected components.

- Gröbner bases for the binomial parts of the minimal primes.

The full-support component is $\left\{X_{i} \Perp X_{[n] \backslash i}: i \leq t\right\}$.

Continuous distributions

Let p be a continuous probability density on the metric space Ω.

Theorem (Peters '14)
If $X_{A} \Perp X_{B} \mid X_{C \cup D}$ and $X_{A} \Perp X_{C} \mid X_{B \cup D}$, then $X_{A} \Perp X_{B \cup C} \mid\left(X_{D}, \mathscr{C}\right)$ where \mathscr{C} is the component of $\{(b, c): p(b, c, d)>0\}$ containing $x_{B \cup C}$.

Let $\left\{\mathscr{C}_{B, i}\right\}_{i=1}^{k}$ and $\left\{\mathscr{C}_{C, i}\right\}_{i=1}^{k}$ be families of minimal disjoint sets s.t.
$\{(b, c): p(b, c, d)>0\} \subseteq \bigcup_{i}\left(\mathscr{C}_{B, i} \times \mathscr{C}_{C, i}\right)$.
The $\mathscr{C}_{B, i} \times \mathscr{C}_{C, i}$ are the components.

Selected references

- A Fink, The binomial ideal of the intersection axiom for conditional probabilities, J. of Algebraic Combinatorics 33 issue 3 (2011), 455-463.
- J Herzog, T Hibi, F Hreinsdóttir, T Kahle, J Rauh, Binomial edge ideals and conditional independence statements, Advances in Applied Mathematics 45 no. 3 (2010), 317-333.
- M Ohtani, Graphs and ideals generated by some 2-minors, Communications in Algebra 39, no. 3 (2011), 905-917.
- J Peters, On the intersection property of conditional independence and its application to causal discovery, J. of Causal Inference 3 (2015), 97-108.
- J Rauh, N Ay, Robustness and conditional independence ideals, arXiv:1110.1338.
- I Swanson, A Taylor, Minimal primes of ideals arising from conditional independence statements, J. Algebra 392 (2013), 299-314.

Thanks!

