Polytopes and moduli of matroids over rings

Alex Fink ${ }^{1} \quad$ Luca Moci ${ }^{2}$
${ }^{1}$ Queen Mary University of London
${ }^{2}$ Paris VII

Perspectives in Lie Theory
16 February 2015

Outline

This talk is on joint work with Luca Moci, a second paper in preparation following up on arXiv:1209.6571.

- Matroids
- Matroids over rings, and a few applications
- The right choice of module invariants; how the axioms interrelate
- Polytopes
- The parameter space
- Coxeter generalizations?

Definition

A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\operatorname{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that:
(0) $\operatorname{rk}(\emptyset)=0$
(1) $\operatorname{rk}(A) \leq \operatorname{rk}(A \cup\{b\}) \leq \operatorname{rk}(A)+1 \quad \forall A \not \supset b$
(2) $\operatorname{rk}(A)+\operatorname{rk}(A \cup\{b, c\}) \leq \operatorname{rk}(A \cup\{b\})+\operatorname{rk}(A \cup\{c\}) \quad \forall A \not \supset b, c$

Guiding example: realizable matroids
Let v_{1}, \ldots, v_{n} be vectors in a vector space V.

$$
\operatorname{rk}(A):=\operatorname{dim} \operatorname{span}\left\{v_{i}: i \in A\right\}
$$

Matroids

Definition

A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\operatorname{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that:
(0) $\operatorname{rk}(\emptyset)=0$
(1) $\operatorname{rk}(A) \leq \operatorname{rk}(A \cup\{b\}) \leq \operatorname{rk}(A)+1 \quad \forall A \not \supset b$
(2) $\operatorname{rk}(A)+\operatorname{rk}(A \cup\{b, c\}) \leq \operatorname{rk}(A \cup\{b\})+\operatorname{rk}(A \cup\{c\}) \quad \forall A \not \supset b, c$

A realizable matroid in full

A	\emptyset	1	2	12	3	13	23	123
$\operatorname{rk}(A)$	0	1	1	1	1	2	2	2

Recast with $\operatorname{cork}(A)=r-\operatorname{rk}(A)$.

Definition

A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a corank $\operatorname{cork}(A) \in \mathbb{Z}_{\geq 0}$, such that:
(s) $\operatorname{cork}(E)=0$
(1) $\operatorname{cork}(A) \geq \operatorname{cork}(A \cup\{b\}) \geq \operatorname{cork}(A)+1 \quad \forall A \not \supset b$
(2) $\operatorname{cork}(A)+\operatorname{cork}(A \cup\{b, c\}) \geq \operatorname{cork}(A \cup\{b\})+\operatorname{cork}(A \cup\{c\})$ $\forall A \not \supset b, c$

Enriching matroids

Matroids over rings generalise matroids, as well as several variants which retain more data.

Valuated matroids come from configurations over a field with valuation, and remember valuations.
[Dress-Wenzel]
Arithmetic matroids come from configurations over \mathbb{Z}, and remember indices of sublattices.
[D'Adderio-Moci]
(Compare matroids with coefficients [Dress].)

Matroids over rings

Let R be a commutative ring.
Let v_{1}, \ldots, v_{n} be a configuration of vectors in an R-module N. We would like a system of axioms for the quotients $N /\left\langle v_{i}: i \in A\right\rangle$.

Realizable example

$v_{1}=(-2,1)$	$d_{2}=(1,1)$	$\begin{aligned} & A \\ & M(A) \end{aligned}$	$\begin{gathered} \emptyset \\ \mathbb{Z}^{2} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbb{Z} \end{aligned}$	$\begin{aligned} & 2 \\ & \mathbb{Z} \end{aligned}$	$\begin{gathered} 12 \\ \mathbb{Z} / 3 \end{gathered}$
		A	3	13	23	123
		$M(A)$	$\mathbb{Z} \oplus \mathbb{Z} / 2$	$\mathbb{Z} / 8$	$\mathbb{Z} / 2$	1

Let x_{1}, \ldots, x_{n} be a configuration of elements in an R-module N. We would like a system of axioms for the quotients $N /\left\langle x_{i}: i \in A\right\rangle$.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset
$A \subseteq E$ a f.g. R module $M(A)$ up to \cong, such that
for all $A \subseteq E$ and $b, c \notin A$, there are elements

$$
x=x(b, c), \quad y=y(b, c) \in M(A)
$$

with
$M(A \cup\{c\}) \cong M(A) /\langle y\rangle, \quad M(A \cup\{b, c\}) \cong M(A) /\langle x, y\rangle$.

Making different choices of x and y allows nonrealizability.

Matroids over rings: definition

Let x_{1}, \ldots, x_{n} be a configuration of elements in an R-module N. We would like a system of axioms for the quotients $N /\left\langle x_{i}: i \in A\right\rangle$.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset $A \subseteq E$ a f.g. R module $M(A)$ up to \cong, such that for all $A \subseteq E$ and $b, c \notin A$, there are elements

$$
x=x(b, c), \quad y=y(b, c) \in M(A)
$$

with

$$
\begin{aligned}
M(A) & =M(A), & M(A \cup\{b\}) & \cong M(A) /\langle x\rangle \\
M(A \cup\{c\}) & \cong M(A) /\langle y\rangle, & M(A \cup\{b, c\}) & \cong M(A) /\langle x, y\rangle .
\end{aligned}
$$

Making different choices of x and y allows nonrealizability.

Let x_{1}, \ldots, x_{n} be a configuration of elements in an R-module N. We would like a system of axioms for the quotients $N /\left\langle x_{i}: i \in A\right\rangle$.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset $A \subseteq E$ a f.g. R module $M(A)$ up to \cong, such that for all $A \subseteq E$ and $b, c \notin A$, there are elements

$$
x=x(b, c), \quad y=y(b, c) \in M(A)
$$

with

$$
\begin{aligned}
M(A) & =M(A), & M(A \cup\{b\}) & \cong M(A) /\langle x\rangle \\
M(A \cup\{c\}) & \cong M(A) /\langle y\rangle, & M(A \cup\{b, c\}) & \cong M(A) /\langle x, y\rangle .
\end{aligned}
$$

Making different choices of x and y allows nonrealizability.

Matroids are matroids over fields

Theorem 1 (F-Moci)
Matroids over a field \mathbf{k} are equivalent to matroids*.

$$
{ }^{*} \text { if } M(E)=\emptyset .
$$

A f.g. k-module is determined by its dimension $\in \mathbb{Z}$.
If v_{1}, \ldots, v_{n} are vectors in \mathbf{k}^{r}, the dimension of $\mathbf{k}^{r} /\left\langle v_{i}: i \in N\right\rangle$ is $\operatorname{cork}(A)$.

Note: The definition of matroids over k is blind to which field k is.
For realizability the choice matters.

Matroids are matroids over fields

Theorem 1 (F-Moci)
Matroids over a field \mathbf{k} are equivalent to matroids*.

$$
{ }^{*} \text { if } M(E)=\emptyset .
$$

A f.g. k-module is determined by its dimension $\in \mathbb{Z}$.
If v_{1}, \ldots, v_{n} are vectors in \mathbf{k}^{r}, the dimension of $\mathbf{k}^{r} /\left\langle v_{i}: i \in N\right\rangle$ is $\operatorname{cork}(A)$.

Note: The definition of matroids over \mathbf{k} is blind to which field \mathbf{k} is.
For realizability the choice matters.

Subtorus arrangements

Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ be codimension one tori in an r-dim'l torus T. [De Concini-Procesi]

The subtori $H_{i}=\left\{x: u_{i}(x)=1\right\}$ are dual to characters $u_{i} \in \operatorname{Char}(T) \cong \mathbb{Z}^{r}$.

The arithmetic Tutte polynomial [D'Adderio-Moci] and Tutte quasipolynomial [Brändén-Moci] are invariants of M.

Subtorus arrangements

Let $\mathcal{H}=\left\{H_{1}, \ldots, H_{n}\right\}$ be codimension one tori in an r-dim'l torus T. [De Concini-Procesi]

The subtori $H_{i}=\left\{x: u_{i}(x)=1\right\}$ are dual to characters $u_{i} \in \operatorname{Char}(T) \cong \mathbb{Z}^{r}$.

Let M be the matroid over \mathbb{Z} represented by the u_{i}.

$$
M(A)=\mathbb{Z}^{k} \oplus(\text { finite })=: M(A)^{\text {free }} \oplus M(A)^{\text {torsion }}
$$

Then

$$
\begin{array}{lll}
\operatorname{rk}\left(M(A)^{\text {free }}\right)= & \operatorname{codim} \bigcap_{i \in A} H_{i}= & \operatorname{dim} \operatorname{span}\left\{u_{i}: i \in A\right\} \\
\left|M(A)^{\text {torsion }}\right|= & \# \text { components } \bigcap_{i \in A} H_{i}= & {\left[\mathbb{R}\left\{u_{i}\right\} \cap \operatorname{Char}(T): \mathbb{Z}\left\{u_{i}\right\}\right]}
\end{array}
$$

The arithmetic Tutte polynomial [D'Adderio-Moci] and Tutte quasipolynomial [Brändén-Moci] are invariants of M.

Tropical linear spaces

Let (R, val) be a valuation ring.
Given $v_{1}, \ldots, v_{n} \in R^{r}$, let $p_{A}=\operatorname{det}\left(v_{a}: a \in A\right)$.
The ideal of relations among the p_{A} is generated by Plücker relations

$$
p_{A b c} p_{A d e}-p_{A b d} p_{A c e}+p_{A b e} p_{A c d}=0 .
$$

A valuated matroid remembers the $v_{A}=\operatorname{val}\left(p_{A}\right)$, which satisfy $\min \left\{v_{A b c}+v_{A d e}, v_{A b d}+v_{A c e}, v_{A b e}+v_{A c d}\right\}$ appears twice.

The Plücker relations cut out the Grassmannian.
The valuated Plücker relations define the tronical Dressian,
whose points correspond to tropical linear spaces.

A matroid over R contains the data of a tropical linear space.

But what other data is in there?

Tropical linear spaces

Let (R, val) be a valuation ring.
Given $v_{1}, \ldots, v_{n} \in R^{r}$, let $p_{A}=\operatorname{det}\left(v_{a}: a \in A\right)$.
The ideal of relations among the p_{A} is generated by Plücker relations

$$
p_{A b c} p_{A d e}-p_{A b d} p_{A c e}+p_{A b e} p_{A c d}=0 .
$$

A valuated matroid remembers the $v_{A}=\operatorname{val}\left(p_{A}\right)$, which satisfy

$$
\min \left\{v_{A b c}+v_{A d e}, v_{A b d}+v_{A c e}, v_{A b e}+v_{A c d}\right\} \text { appears twice. }
$$

The Plücker relations cut out the Grassmannian.
The valuated Plücker relations define the tropical Dressian, whose points correspond to tropical linear spaces.

A matroid over R contains the data of a tropical linear space.
But what other data is in there?

Tropical linear spaces

Let (R, val) be a valuation ring.
Given $v_{1}, \ldots, v_{n} \in R^{r}$, let $p_{A}=\operatorname{det}\left(v_{a}: a \in A\right)$.
The ideal of relations among the p_{A} is generated by Plücker relations

$$
p_{A b c} p_{A d e}-p_{A b d} p_{A c e}+p_{A b e} p_{A c d}=0 .
$$

A valuated matroid remembers the $v_{A}=\operatorname{val}\left(p_{A}\right)$, which satisfy

$$
\min \left\{v_{A b c}+v_{A d e}, v_{A b d}+v_{A c e}, v_{A b e}+v_{A c d}\right\} \text { appears twice. }
$$

The Plücker relations cut out the Grassmannian.
The valuated Plücker relations define the tropical Dressian, whose points correspond to tropical linear spaces.

A matroid over R contains the data of a tropical linear space.
But what other data is in there?

Structure theory of f.p. modules over a valuation ring

Assume (R, val) is a valuation ring.

Theorem

Any finitely presented R-module is the direct sum of copies of R and $R / \operatorname{val}^{-1}[a, \infty)$.

Let length $(R)=\infty$ and length $\left(R / \operatorname{val}^{-1}[a, \infty)\right)=a$, and extend additively.

Proposition

For a f.p. R-module N, define

$$
t_{i}(N):=\min _{x_{1}, \ldots, x_{i} \in N} \operatorname{length}\left(N /\left\langle x_{1}, \ldots, x_{i}\right\rangle\right) .
$$

Then the series $\left(t_{i}(N)\right)_{i \geq 0}$ is a complete isomorphism invariant.

The length axiomatization

Theorem

Let $t_{i}(A) \in \operatorname{val}(R) \cup\{\infty\}$ for each $A \subseteq E$ and $i \geq 0$. There exists a matroid M over R so that $t_{i}(A)=t_{i}(M(A)) \Longleftrightarrow$ for all $A \subseteq E$ and $b, c \in E \backslash A$ and $i \geq 0$,
(Ts) the sequence $\left(t_{i}(A)\right)_{i \in \mathbb{N}}$ stabilises at zero;
(T0) $t_{i}(A)-t_{i+1}(A) \geq t_{i+1}(A)-t_{i+2}(A)$;
(T1) $t_{i}(A)-t_{i+1}(A) \geq t_{i}(A b)-t_{i+1}(A b) \geq t_{i+1}(A)-t_{i+2}(A)$;
(T2) $t_{i+1}(A)-t_{i+1}(A b)-t_{i+1}(A c)+t_{i}(A b c) \geq$
$\min \left\{t_{i}(A b)-t_{i+1}(A b), t_{i}(A c)-t_{i+1}(A c)\right\}$, and equality is attained if the terms of the min differ.

Conditions (TO-2) imply the valuated matroid axiom
$\min \left\{t_{i}(A b c)+t_{i}(A d e), t_{i}(A b d)+t_{i}(A c e), t_{i}(A b e)+t_{i}(A c d)\right\}$

The length axiomatization

Theorem

Let $t_{i}(A) \in \operatorname{val}(R) \cup\{\infty\}$ for each $A \subseteq E$ and $i \geq 0$. There exists a matroid M over R so that $t_{i}(A)=t_{i}(M(A)) \Longleftrightarrow$ for all $A \subseteq E$ and $b, c \in E \backslash A$ and $i \geq 0$,
(Ts) the sequence $\left(t_{i}(A)\right)_{i \in \mathbb{N}}$ stabilises at zero;
(T0) $t_{i}(A)-t_{i+1}(A) \geq t_{i+1}(A)-t_{i+2}(A)$;
(T1) $t_{i}(A)-t_{i+1}(A) \geq t_{i}(A b)-t_{i+1}(A b) \geq t_{i+1}(A)-t_{i+2}(A)$;
(T2) $t_{i+1}(A)-t_{i+1}(A b)-t_{i+1}(A c)+t_{i}(A b c) \geq$ $\min \left\{t_{i}(A b)-t_{i+1}(A b), t_{i}(A c)-t_{i+1}(A c)\right\}$, and equality is attained if the terms of the min differ.

Conditions (T0-2) imply the valuated matroid axiom:

$$
\min \left\{t_{i}(A b c)+t_{i}(A d e), t_{i}(A b d)+t_{i}(A c e), t_{i}(A b e)+t_{i}(A c d)\right\}
$$ is attained twice.

Generizing and zeroizing

Let $x_{1}, \ldots, x_{n} \in N$ have matroid M over R.
If we add $x_{0}=0 \in N$ to the configuration, the new matroid M_{0} has

$$
M_{0}(A 0)=M_{0}(A)=M(A) .
$$

If instead we add a suitably generic $x_{*} \in N$, the new matroid M_{*} has

$$
M_{*}(A)=M(A), \quad t_{i}\left(M_{*}(A *)\right)=t_{i+1}(M(A))
$$

Generizing and zeroizing

Let $x_{1}, \ldots, x_{n} \in N$ have matroid M over R.
If we add $x_{0}=0 \in N$ to the configuration, the new matroid M_{0} has

$$
M_{0}(A 0)=M_{0}(A)=M(A)
$$

If instead we add a suitably generic $x_{*} \in N$, the new matroid M_{*} has

$$
M_{*}(A)=M(A), \quad t_{i}\left(M_{*}(A *)\right)=t_{i+1}(M(A))
$$

By specializing k elements to zero and ℓ to generic, $0 \leq k, \ell \leq 2$, condition (D00) becomes (Dkl).
Fact
$(\mathrm{T} 0)$ is $(\mathrm{D} 22) . \quad(\mathrm{T} 1)$ is $(\mathrm{D} 12) \wedge(\mathrm{D} 21) . \quad(\mathrm{T} 2)$ is (D11).

Almost-corollary
(D00), (D01), (D10), (Ts) are another choice of axioms.

Polytopes of matroids and valuated matroids

The (basis) polytope of a usual matroid M is

$$
\operatorname{conv}\left\{e_{A}:|A|=r, \operatorname{cork}(A)=0\right\}
$$

The polytope of a valuated matroid M is

$$
\operatorname{conv}\left\{\left(e_{A}, p_{A}\right):|A|=r\right\}+\mathbb{R}_{\geq 0}(\underline{0}, 1)
$$

where conv discards points (v, ∞).

Theorem

P is a (valuated) matroid polytope if and only if

- each vertex (resp. its projection to \mathbb{R}^{n}) is a 0-1 vector; and
- each edge (resp. its projection) is in some direction $e_{i}-e_{j}$, with $i, j \in[n]$.

The polytope axiomatization

Let (R, val) be a valuation ring with $\operatorname{val}(R) \subseteq \mathbb{R}$.
For M a matroid over R, define the polytope

$$
P(M):=\operatorname{conv}\left\{\left(e_{A}, i, t_{i}(M(A))\right\}+\mathbb{R}_{\geq 0}(\underline{0}, 0,1) .\right.
$$

Theorem

P is the polytope of a matroid over R if and only if

- the projection of each vertex to $\mathbb{R}^{n} \times \mathbb{R}$ is in $\{0,1\}^{n} \times \mathbb{N}$;
- the projection of each edge is in some direction $e_{i}-e_{j}$, where $i, j \in[n] \cup\{0, n+1\}$, taking $e_{0}=0$;
- P contains $[0,1]^{n} \times[N, \infty) \times[0, \infty)$ for some N.

If R has more primes, introduce more height coordinates.

The polytope axiomatization

Let (R, val) be a valuation ring with $\operatorname{val}(R) \subseteq \mathbb{R}$.
For M a matroid over R, define the polytope

$$
P(M):=\operatorname{conv}\left\{\left(e_{A}, i, t_{i}(M(A))\right\}+\mathbb{R}_{\geq 0}(\underline{0}, 0,1) .\right.
$$

Theorem

P is the polytope of a matroid over R if and only if

- the projection of each vertex to $\mathbb{R}^{n} \times \mathbb{R}$ is in $\{0,1\}^{n} \times \mathbb{N}$;
- the projection of each edge is in some direction $e_{i}-e_{j}$, where $i, j \in[n] \cup\{0, n+1\}$, taking $e_{0}=0$;
- P contains $[0,1]^{n} \times[N, \infty) \times[0, \infty)$ for some N.

If R has more primes, introduce more height coordinates.

Plücker incidence relations

$$
\min \left\{t_{i}(A b c)+t_{i}(A d), t_{i}(A b d)+t_{i}(A c), t_{i}(A c d)+t_{i}(A b)\right\}
$$

is attained twice
(D10)

$$
\min \left\{t_{i}(A b c)+t_{i+1}(A d), t_{i}(A b d)+t_{i+1}(A c), t_{i}(A c d)+t_{i+1}(A b)\right\}
$$

is attained twice
are the tropicalizations of incidence relations between $\operatorname{Gr}(|A|+1, n)$ and $\operatorname{Gr}(|A|+2, n)$.

If $L_{i}(k)$ is the tropical linear space with Plücker coordinates $t_{i}(M(A))$ for $A \in\binom{E}{k}$, then

The standard flag of tropical linear spaces has all Plücker coordinates zero.

Theorem
Any diagram (L) of tropical linear spaces, in which all Plücker coordinates lie in $\operatorname{val}(R)$ and $L_{i}(\cdot)$ is the standard flag for $i \gg 0$, corresponds to a matroid over R.

Not uniquely, since Plücker coordinates of $L_{i}(k)$ are nonunique.

Bott-Samelson varieties

Fix a complete flag \mathcal{F} in \mathbb{C}^{n} and let $w=s_{i_{1}} \ldots s_{i_{\ell}}$ be a word in A_{n-1}. The Bott-Samelson variety of w is

$$
Z_{w}=\left\{\left(\mathcal{F}_{0}, \ldots, \mathcal{F}_{s}\right) \in \mathcal{F} \ell_{n}^{s+1}: \mathcal{F}_{0}=\mathcal{F},\right.
$$

\mathcal{F}_{k} and \mathcal{F}_{k+1} agree except in the i_{k}-dimensional space\}.

Let $Z_{w}^{\text {trop }}$ be its naive tropical analogue using Dressians.

\square
The parameter space of n-element matroids over R of global rank r is

where O_{k} is a $r(n-r)+k n$ dim'l orthant bundle over $Z_{w c^{k}}^{\text {trop }}$,
with w a longest Grassmannian word and c a certain Coxeter element.

Bott-Samelson varieties

Fix a complete flag \mathcal{F} in \mathbb{C}^{n} and let $w=s_{i_{1}} \ldots s_{i \ell}$ be a word in A_{n-1}. The Bott-Samelson variety of w is

$$
Z_{w}=\left\{\left(\mathcal{F}_{0}, \ldots, \mathcal{F}_{s}\right) \in \mathcal{F} \ell_{n}^{s+1}: \mathcal{F}_{0}=\mathcal{F},\right.
$$

\mathcal{F}_{k} and \mathcal{F}_{k+1} agree except in the i_{k}-dimensional space $\}$.

Let $Z_{w}^{\text {trop }}$ be its naive tropical analogue using Dressians.

Theorem

The parameter space of n-element matroids over R of global rank r is

$$
\lim _{k \geq 0} O_{k}
$$

where O_{k} is a $r(n-r)+k n$ dim'l orthant bundle over $Z_{w c^{k}}^{\mathrm{trop}}$, with w a longest Grassmannian word and c a certain Coxeter element.

Bott-Samelson varieties

Fix a complete flag \mathcal{F} in \mathbb{C}^{n} and let $w=s_{i_{1}} \ldots s_{i \ell}$ be a word in A_{n-1}.
The Bott-Samelson variety of w is

$$
Z_{w}=\left\{\left(\mathcal{F}_{0}, \ldots, \mathcal{F}_{s}\right) \in \mathcal{F} \ell_{n}^{s+1}: \mathcal{F}_{0}=\mathcal{F},\right.
$$

\mathcal{F}_{k} and \mathcal{F}_{k+1} agree except in the i_{k}-dimensional space $\}$.

Let $Z_{w}^{\text {trop }}$ be its naive tropical analogue using Dressians.

Theorem

The parameter space of n-element matroids over R of global rank r is

$$
\lim _{k \geq 0} O_{k}
$$

where O_{k} is a $r(n-r)+k n$ dim'l orthant bundle over $Z_{w c^{k}}^{\mathrm{trop}}$, with w a longest Grassmannian word and c a certain Coxeter element.

Tropical Schubert calculus?

Coxeter generalizations?

Bott-Samelson varieties exist in any Weyl type:

$$
Z_{w}=\overline{\left\{\left(x, e_{i_{1}}\left(t_{1}\right) x, \ldots, e_{i_{\ell}}\left(t_{\ell}\right) \cdots e_{i_{1}}\left(t_{1}\right) x\right)\right\}} \subseteq(G / B)^{\ell+1}
$$

where the e_{i} are Chevalley generators.
Tropical Dressians should exist too.
Question Does this have anything to do with a valuation ring anymore?

As for $P(M)$, it has edges in directions of the A_{n+1} roots (in which an A_{1} orthogonal to the A_{n-1} has a special role.)

Question Are these two connected?

Coxeter generalizations?

Bott-Samelson varieties exist in any Weyl type:

$$
Z_{w}=\overline{\left\{\left(x, e_{i_{1}}\left(t_{1}\right) x, \ldots, e_{i_{\ell}}\left(t_{\ell}\right) \cdots e_{i_{1}}\left(t_{1}\right) x\right)\right\}} \subseteq(G / B)^{\ell+1}
$$

where the e_{i} are Chevalley generators.
Tropical Dressians should exist too.
Question Does this have anything to do with a valuation ring anymore?
As for $P(M)$, it has edges in directions of the A_{n+1} roots (in which an A_{1} orthogonal to the A_{n-1} has a special role.)

Question $A_{n-1}: A_{n+1}:: W$: what?

Question Are these two connected?

Coxeter generalizations?

Bott-Samelson varieties exist in any Weyl type:

$$
Z_{w}=\overline{\left\{\left(x, e_{i_{1}}\left(t_{1}\right) x, \ldots, e_{i_{\ell}}\left(t_{\ell}\right) \cdots e_{i_{1}}\left(t_{1}\right) x\right)\right\}} \subseteq(G / B)^{\ell+1}
$$

where the e_{i} are Chevalley generators.
Tropical Dressians should exist too.
Question Does this have anything to do with a valuation ring anymore?
As for $P(M)$, it has edges in directions of the A_{n+1} roots (in which an A_{1} orthogonal to the A_{n-1} has a special role.)

Question $A_{n-1}: A_{n+1}:: W$: what?

Question Are these two connected?

Coxeter generalizations?

Bott-Samelson varieties exist in any Weyl type:

$$
Z_{w}=\overline{\left\{\left(x, e_{i_{1}}\left(t_{1}\right) x, \ldots, e_{i_{\ell}}\left(t_{\ell}\right) \cdots e_{i_{1}}\left(t_{1}\right) x\right)\right\}} \subseteq(G / B)^{\ell+1}
$$

where the e_{i} are Chevalley generators.
Tropical Dressians should exist too.
Question Does this have anything to do with a valuation ring anymore?
As for $P(M)$, it has edges in directions of the A_{n+1} roots (in which an A_{1} orthogonal to the A_{n-1} has a special role.)

Question $A_{n-1}: A_{n+1}:: W$: what?

Question Are these two connected?

Thank you!

A bit more on DVRs

There is a bijection between

Example

finitely generated modules over a DVR
$N_{\lambda}=R \oplus R / \mathfrak{m}^{3} \oplus R / \mathfrak{m}$
\& partitions allowing infinite parts.

$$
\lambda=\# \#
$$

Theorem (Hall, ...)
The number of exact sequences

$$
0 \rightarrow N_{\lambda} \rightarrow N_{v} \rightarrow N_{\mu} \rightarrow 0
$$

up to \cong of sequences is the $L R$ coeff $c_{\lambda \mu}^{\nu} \quad$ (or its infinite-rows analog).

So, quotients by one element give the Pieri rule.
Lemma, en route to Theorem 3
M is a 1-element matroid over $R \Longleftrightarrow$
$M(\emptyset)$ has at most one box more in each column than $M(1)$.

