Polytopes and moduli of matroids over rings

Alex Fink¹ Luca Moci²

¹Queen Mary University of London

²Paris VII

Perspectives in Lie Theory 16 February 2015

This talk is on joint work with Luca Moci, a second paper in preparation following up on arXiv:1209.6571.

- Matroids
- Matroids over rings, and a few applications
- ► The right choice of module invariants; how the axioms interrelate
- Polytopes
- ► The parameter space
- Coxeter generalizations?

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Definition

A matroid M on the finite ground set E assigns to each subset $A \subseteq E$ a rank $\operatorname{rk}(A) \in \mathbb{Z}_{\geq 0}$, such that: (0) $\operatorname{rk}(\emptyset) = 0$ (1) $\operatorname{rk}(A) \leq \operatorname{rk}(A \cup \{b\}) \leq \operatorname{rk}(A) + 1 \quad \forall A \not\supseteq b$ (2) $\operatorname{rk}(A) + \operatorname{rk}(A \cup \{b, c\}) \leq \operatorname{rk}(A \cup \{b\}) + \operatorname{rk}(A \cup \{c\}) \quad \forall A \not\supseteq b, c$

Guiding example: realizable matroids

Let v_1, \ldots, v_n be vectors in a vector space V.

 $\operatorname{rk}(A) := \dim \operatorname{span}\{v_i : i \in A\}$

ヘロト 人間ト ヘヨト ヘヨト

= nar

Definition

A matroid *M* on the finite ground set *E* assigns to each subset $A \subseteq E$ a rank $rk(A) \in \mathbb{Z}_{\geq 0}$, such that:

(0) $\operatorname{rk}(\emptyset) = 0$

(1) $\operatorname{rk}(A) \leq \operatorname{rk}(A \cup \{b\}) \leq \operatorname{rk}(A) + 1 \qquad \forall A \not\ni b$

(2) $\operatorname{rk}(A) + \operatorname{rk}(A \cup \{b, c\}) \le \operatorname{rk}(A \cup \{b\}) + \operatorname{rk}(A \cup \{c\}) \qquad \forall A \not\supseteq b, c$

Recast with $\operatorname{cork}(A) = r - \operatorname{rk}(A)$.

Definition

A matroid *M* on the finite ground set *E* assigns to each subset $A \subseteq E$ a corank $\operatorname{cork}(A) \in \mathbb{Z}_{\geq 0}$, such that:

(s) $\operatorname{cork}(E) = 0$

(1) $\operatorname{cork}(A) \ge \operatorname{cork}(A \cup \{b\}) \ge \operatorname{cork}(A) + 1 \qquad \forall A \not\supseteq b$

(2) $\operatorname{cork}(A) + \operatorname{cork}(A \cup \{b, c\}) \ge \operatorname{cork}(A \cup \{b\}) + \operatorname{cork}(A \cup \{c\})$ $\forall A \not\supseteq b, c$

イロト イポト イヨト イヨト

Matroids over rings generalise matroids, as well as several variants which retain more data.

Valuated matroids come from configurations over a field with valuation, and remember valuations. [Dress-Wenzel]

Arithmetic matroids come from configurations over \mathbb{Z} , and remember indices of sublattices. [D'Adderio-Moci]

(Compare matroids with coefficients [Dress].)

イロト イポト イヨト イヨト

Let R be a commutative ring.

Let v_1, \ldots, v_n be a configuration of vectors in an *R*-module *N*. We would like a system of axioms for the quotients $N/\langle v_i : i \in A \rangle$.

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Matroids over rings: definition

Let x_1, \ldots, x_n be a configuration of elements in an *R*-module *N*. We would like a system of axioms for the quotients $N/\langle x_i : i \in A \rangle$.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset $A \subseteq E$ a f.g. R module M(A) up to \cong , such that

for all $A \subseteq E$ and $b, c \notin A$, there are elements

$$x = x(b, c), \quad y = y(b, c) \in M(A)$$

with

 $M(A) = M(A), \qquad M(A \cup \{b\}) \cong M(A)/\langle x \rangle,$ $M(A \cup \{c\}) \cong M(A)/\langle y \rangle, \qquad M(A \cup \{b, c\}) \cong M(A)/\langle x, y \rangle.$

Making different choices of x and y allows nonrealizability.

Matroids over rings: definition

Let x_1, \ldots, x_n be a configuration of elements in an *R*-module *N*. We would like a system of axioms for the quotients $N/\langle x_i : i \in A \rangle$.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset $A \subseteq E$ a f.g. R module M(A) up to \cong , such that

for all $A \subseteq E$ and $b, c \notin A$, there are elements

$$x = x(b, c), \quad y = y(b, c) \in M(A)$$

with

$$\begin{split} \mathcal{M}(A) &= \mathcal{M}(A), & \mathcal{M}(A \cup \{b\}) \cong \mathcal{M}(A) / \langle x \rangle, \\ \mathcal{M}(A \cup \{c\}) \cong \mathcal{M}(A) / \langle y \rangle, & \mathcal{M}(A \cup \{b, c\}) \cong \mathcal{M}(A) / \langle x, y \rangle. \end{split}$$

Making different choices of x and y allows nonrealizability.

< ロト (同) (三) (三) (二) (.)

Matroids over rings: definition

Let x_1, \ldots, x_n be a configuration of elements in an *R*-module *N*. We would like a system of axioms for the quotients $N/\langle x_i : i \in A \rangle$.

Main definition [F-Moci]

A matroid over R on the finite ground set E assigns to each subset $A \subseteq E$ a f.g. R module M(A) up to \cong , such that

for all $A \subseteq E$ and $b, c \notin A$, there are elements

$$x = x(b, c), \quad y = y(b, c) \in M(A)$$

with

 $M(A) = M(A), \qquad M(A \cup \{b\}) \cong M(A)/\langle x \rangle,$ $M(A \cup \{c\}) \cong M(A)/\langle y \rangle, \qquad M(A \cup \{b, c\}) \cong M(A)/\langle x, y \rangle.$

Making different choices of x and y allows nonrealizability.

Theorem 1 (F-Moci)

Matroids over a field \mathbf{k} are equivalent to matroids^{*}.

*if $M(E) = \emptyset$.

A f.g. k-module is determined by its dimension $\in \mathbb{Z}$. If v_1, \ldots, v_n are vectors in \mathbf{k}^r ,

the dimension of $\mathbf{k}^r / \langle v_i : i \in N \rangle$ is $\operatorname{cork}(A)$.

Note: The definition of matroids over **k** is blind to which field **k** is. For realizability the choice matters.

Polytopes and moduli of matroids over rings 9 / 20

Theorem 1 (F-Moci)

Matroids over a field \mathbf{k} are equivalent to matroids^{*}.

```
*if M(E) = \emptyset.
```

A f.g. k-module is determined by its dimension $\in \mathbb{Z}$.

If v_1, \ldots, v_n are vectors in \mathbf{k}^r , the dimension of $\mathbf{k}^r / \langle v_i : i \in N \rangle$ is $\operatorname{cork}(A)$.

Note: The definition of matroids over \mathbf{k} is blind to which field \mathbf{k} is. For realizability the choice matters. Let $\mathcal{H} = \{H_1, \ldots, H_n\}$ be codimension one tori in an *r*-dim'l torus \mathcal{T} . [De Concini-Procesi]

The subtori $H_i = \{x : u_i(x) = 1\}$ are dual to characters $u_i \in Char(T) \cong \mathbb{Z}^r$.

Let M be the matroid over \mathbb{Z} represented by the u_i . $M(A) = \mathbb{Z}^k \oplus (\text{finite}) =: M(A)^{\text{free}} \oplus M(A)^{\text{torsion}}$

Then

 $rk(M(A)^{\text{free}}) = \operatorname{codim} \bigcap_{i \in A} H_i = \operatorname{dim} \operatorname{span}\{u_i : i \in A\} \\ |M(A)^{\operatorname{torsion}}| = \# \operatorname{components} \bigcap_{i \in A} H_i = [\mathbb{R}\{u_i\} \cap \operatorname{Char}(T) : \mathbb{Z}\{u_i\}]$

The arithmetic Tutte polynomial [D'Adderio-Moci] and Tutte quasipolynomial [Brändén-Moci] are invariants of *M*.

Let $\mathcal{H} = \{H_1, \dots, H_n\}$ be codimension one tori in an *r*-dim'l torus \mathcal{T} . [De Concini-Procesi]

The subtori $H_i = \{x : u_i(x) = 1\}$ are dual to characters $u_i \in Char(T) \cong \mathbb{Z}^r$.

Let M be the matroid over \mathbb{Z} represented by the u_i . $M(A) = \mathbb{Z}^k \oplus (\text{finite}) =: M(A)^{\text{free}} \oplus M(A)^{\text{torsion}}$

Then

$$\begin{aligned} \operatorname{rk}(M(A)^{\operatorname{free}}) &= \operatorname{codim} \bigcap_{i \in A} H_i = & \operatorname{dim} \operatorname{span}\{u_i : i \in A\} \\ |M(A)^{\operatorname{torsion}}| &= & \# \text{ components } \bigcap_{i \in A} H_i = & [\mathbb{R}\{u_i\} \cap \operatorname{Char}(\mathcal{T}) : \mathbb{Z}\{u_i\}] \end{aligned}$$

The arithmetic Tutte polynomial [D'Adderio-Moci] and Tutte quasipolynomial [Brändén-Moci] are invariants of M.

(日) (同) (三) (三)

Tropical linear spaces

Let (R, val) be a valuation ring.

Given $v_1, \ldots, v_n \in R^r$, let $p_A = \det(v_a : a \in A)$.

The ideal of relations among the p_A is generated by Plücker relations

$$p_{Abc}p_{Ade} - p_{Abd}p_{Ace} + p_{Abe}p_{Acd} = 0.$$

A valuated matroid remembers the $v_A = val(p_A)$, which satisfy $min\{v_{Abc} + v_{Ade}, v_{Abd} + v_{Ace}, v_{Abe} + v_{Acd}\}$ appears twice.

The Plücker relations cut out the Grassmannian. The valuated Plücker relations define the tropical Dressian whose points correspond to tropical linear spaces.

A matroid over R contains the data of a tropical linear space.

But what other data is in there?

Tropical linear spaces

Let (R, val) be a valuation ring.

Given $v_1, \ldots, v_n \in R^r$, let $p_A = \det(v_a : a \in A)$.

The ideal of relations among the p_A is generated by Plücker relations

$$p_{Abc}p_{Ade} - p_{Abd}p_{Ace} + p_{Abe}p_{Acd} = 0.$$

A valuated matroid remembers the $v_A = val(p_A)$, which satisfy $min\{v_{Abc} + v_{Ade}, v_{Abd} + v_{Ace}, v_{Abe} + v_{Acd}\}$ appears twice.

The Plücker relations cut out the Grassmannian. The valuated Plücker relations define the tropical Dressian, whose points correspond to tropical linear spaces.

A matroid over *R* contains the data of a tropical linear space.

But what other data is in there?

Tropical linear spaces

Let (R, val) be a valuation ring.

Given $v_1, \ldots, v_n \in R^r$, let $p_A = \det(v_a : a \in A)$.

The ideal of relations among the p_A is generated by Plücker relations

$$p_{Abc}p_{Ade} - p_{Abd}p_{Ace} + p_{Abe}p_{Acd} = 0.$$

A valuated matroid remembers the $v_A = val(p_A)$, which satisfy $min\{v_{Abc} + v_{Ade}, v_{Abd} + v_{Ace}, v_{Abe} + v_{Acd}\}$ appears twice.

The Plücker relations cut out the Grassmannian.

The valuated Plücker relations define the tropical Dressian, whose points correspond to tropical linear spaces.

A matroid over R contains the data of a tropical linear space.

Fink, Moci

But what other data is in there?

Polytopes and moduli of matroids over rings 11 / 20

(日) (周) (日) (日)

Structure theory of f.p. modules over a valuation ring

Assume (R, val) is a valuation ring.

Theorem

Any finitely presented *R*-module is the direct sum of copies of *R* and $R/val^{-1}[a, \infty)$.

Let $length(R) = \infty$ and $length(R/val^{-1}[a, \infty)) = a$, and extend additively.

Proposition

For a f.p. R-module N, define

$$t_i(N) := \min_{x_1,\ldots,x_i \in N} \operatorname{length}(N/\langle x_1,\ldots,x_i \rangle).$$

Then the series $(t_i(N))_{i\geq 0}$ is a complete isomorphism invariant.

イロト イポト イヨト イヨト

Theorem

Let $t_i(A) \in val(R) \cup \{\infty\}$ for each $A \subseteq E$ and $i \ge 0$. There exists a matroid M over R so that $t_i(A) = t_i(M(A)) \iff$ for all $A \subseteq E$ and $b, c \in E \setminus A$ and $i \ge 0$,

(Ts) the sequence $(t_i(A))_{i \in \mathbb{N}}$ stabilises at zero;

(T0)
$$t_i(A) - t_{i+1}(A) \ge t_{i+1}(A) - t_{i+2}(A);$$

$$(\mathsf{T1}) \ t_i(A) - t_{i+1}(A) \ge t_i(Ab) - t_{i+1}(Ab) \ge t_{i+1}(A) - t_{i+2}(A);$$

(T2)
$$t_{i+1}(A) - t_{i+1}(Ab) - t_{i+1}(Ac) + t_i(Abc) \ge \min\{t_i(Ab) - t_{i+1}(Ab), t_i(Ac) - t_{i+1}(Ac)\},\$$

and equality is attained if the terms of the min differ

Conditions (T0–2) imply the valuated matroid axiom:

 $\min\{t_i(Abc) + t_i(Ade), t_i(Abd) + t_i(Ace), t_i(Abe) + t_i(Acd)\}$

is attained twice. (D00)

Theorem

Let $t_i(A) \in val(R) \cup \{\infty\}$ for each $A \subseteq E$ and $i \ge 0$. There exists a matroid M over R so that $t_i(A) = t_i(M(A)) \iff$ for all $A \subseteq E$ and $b, c \in E \setminus A$ and $i \ge 0$,

(Ts) the sequence $(t_i(A))_{i \in \mathbb{N}}$ stabilises at zero;

(T0)
$$t_i(A) - t_{i+1}(A) \ge t_{i+1}(A) - t_{i+2}(A);$$

$$(\mathsf{T1}) \ t_i(A) - t_{i+1}(A) \ge t_i(Ab) - t_{i+1}(Ab) \ge t_{i+1}(A) - t_{i+2}(A);$$

T2)
$$t_{i+1}(A) - t_{i+1}(Ab) - t_{i+1}(Ac) + t_i(Abc) \ge \min\{t_i(Ab) - t_{i+1}(Ab), t_i(Ac) - t_{i+1}(Ac)\},\$$

and equality is attained if the terms of the min differ

Conditions (T0-2) imply the valuated matroid axiom:

 $\min\{t_i(Abc) + t_i(Ade), t_i(Abd) + t_i(Ace), t_i(Abe) + t_i(Acd)\}$

is attained twice. (D00)

Generizing and zeroizing

Let $x_1, \ldots, x_n \in N$ have matroid M over R.

If we add $x_0 = 0 \in N$ to the configuration, the new matroid M_0 has $M_0(A0) = M_0(A) = M(A).$

If instead we add a suitably generic $x_* \in N$, the new matroid M_* has $M_*(A) = M(A), \quad t_i(M_*(A*)) = t_{i+1}(M(A)).$

By specializing k elements to zero and ℓ to generic, $0 \le k, \ell \le 2$, condition (D00) becomes (D $k\ell$).

Fact

(T0) is (D22). (T1) is (D12) \land (D21). (T2) is (D11).

Almost-corollary

(D00), (D01), (D10), (Ts) are another choice of axioms.

Fink, Moci

Polytopes and moduli of matroids over rings 14 / 20

Generizing and zeroizing

Let $x_1, \ldots, x_n \in N$ have matroid M over R.

If we add $x_0 = 0 \in N$ to the configuration, the new matroid M_0 has $M_0(A0) = M_0(A) = M(A).$

If instead we add a suitably generic $x_* \in N$, the new matroid M_* has $M_*(A) = M(A), \quad t_i(M_*(A*)) = t_{i+1}(M(A)).$

By specializing k elements to zero and ℓ to generic, $0 \le k, \ell \le 2$, condition (D00) becomes (Dk ℓ).

Fact (T0) is (D22). (T1) is (D12)∧(D21). (T2) is (D11).

Almost-corollary (D00), (D01), (D10), (Ts) are another choice of axioms.

Polytopes of matroids and valuated matroids

The (basis) polytope of a usual matroid M is

$$\operatorname{conv}\{e_A: |A|=r, \operatorname{cork}(A)=0\}.$$

The polytope of a valuated matroid M is

$$\operatorname{conv}\{(e_A, p_A) : |A| = r\} + \mathbb{R}_{\geq 0}(\underline{0}, 1)$$

where conv discards points (v, ∞) .

Theorem

P is a (valuated) matroid polytope if and only if

- each vertex (resp. its projection to \mathbb{R}^n) is a 0-1 vector; and
- ▶ each edge (resp. its projection) is in some direction $e_i e_j$, with $i, j \in [n]$.

(III) (A III) (IIII) (III) (IIII) (IIIII) (IIIII) (IIIII) (IIII) (IIII) (IIII) (IIII)

The polytope axiomatization

Let (R, val) be a valuation ring with $val(R) \subseteq \mathbb{R}$. For M a matroid over R, define the polytope

```
P(M) := \operatorname{conv}\{(e_A, i, t_i(M(A)))\} + \mathbb{R}_{>0}(\underline{0}, 0, 1).
```

Theorem

P is the polytope of a matroid over R if and only if

- ► the projection of each vertex to ℝⁿ × ℝ is in {0,1}ⁿ × ℝ;
- ▶ the projection of each edge is in some direction $e_i e_j$, where $i, j \in [n] \cup \{0, n + 1\}$, taking $e_0 = 0$;
- *P* contains $[0,1]^n \times [N,\infty) \times [0,\infty)$ for some *N*.

If R has more primes, introduce more height coordinates.

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

The polytope axiomatization

Let (R, val) be a valuation ring with $val(R) \subseteq \mathbb{R}$. For M a matroid over R, define the polytope

```
P(M) := \operatorname{conv}\{(e_A, i, t_i(M(A))\} + \mathbb{R}_{\geq 0}(\underline{0}, 0, 1).
```

Theorem

P is the polytope of a matroid over R if and only if

- ► the projection of each vertex to ℝⁿ × ℝ is in {0,1}ⁿ × ℝ;
- ▶ the projection of each edge is in some direction $e_i e_j$, where $i, j \in [n] \cup \{0, n + 1\}$, taking $e_0 = 0$;
- *P* contains $[0,1]^n \times [N,\infty) \times [0,\infty)$ for some *N*.

If R has more primes, introduce more height coordinates.

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

 $\min\{t_i(Abc) + t_i(Ad), t_i(Abd) + t_i(Ac), t_i(Acd) + t_i(Ab)\}$

is attained twice (D10)

$$\min\{t_i(Abc) + t_{i+1}(Ad), t_i(Abd) + t_{i+1}(Ac), t_i(Acd) + t_{i+1}(Ab)\}$$
 is attained twice (D01)

are the tropicalizations of incidence relations between Gr(|A| + 1, n)and Gr(|A| + 2, n).

If $L_i(k)$ is the tropical linear space with Plücker coordinates $t_i(M(A))$ for $A \in {E \choose k}$, then

The standard flag of tropical linear spaces has all Plücker coordinates zero.

Theorem

Any diagram (L) of tropical linear spaces, in which all Plücker coordinates lie in val(R) and $L_i(\cdot)$ is the standard flag for $i \gg 0$, corresponds to a matroid over R.

Not uniquely, since Plücker coordinates of $L_i(k)$ are nonunique.

イロト 不得下 イヨト イヨト

Bott-Samelson varieties

Fix a complete flag \mathcal{F} in \mathbb{C}^n and let $w = s_{i_1} \dots s_{i_\ell}$ be a word in A_{n-1} . The Bott-Samelson variety of w is

$$\begin{split} Z_w = \{(\mathcal{F}_0, \dots, \mathcal{F}_s) \in \mathcal{F}\ell_n^{s+1} : \mathcal{F}_0 = \mathcal{F}, \\ \mathcal{F}_k \text{ and } \mathcal{F}_{k+1} \text{ agree except in the } i_k \text{-dimensional space} \}. \end{split}$$

Let Z_w^{trop} be its naive tropical analogue using Dressians.

Theorem

The parameter space of n-element matroids over R of global rank r is

 $\varinjlim_{k\geq 0} O_k$

where O_k is a r(n - r) + kn dim'l orthant bundle over $Z_{wc^k}^{trop}$, with w a longest Grassmannian word and c a certain Coxeter element.

Tropical Schubert calculus?

Bott-Samelson varieties

Fix a complete flag \mathcal{F} in \mathbb{C}^n and let $w = s_{i_1} \dots s_{i_\ell}$ be a word in A_{n-1} . The Bott-Samelson variety of w is

$$\begin{split} Z_w = \{ (\mathcal{F}_0, \dots, \mathcal{F}_s) \in \mathcal{F}\ell_n^{s+1} : \mathcal{F}_0 = \mathcal{F}, \\ \mathcal{F}_k \text{ and } \mathcal{F}_{k+1} \text{ agree except in the } i_k \text{-dimensional space} \}. \end{split}$$

Let Z_w^{trop} be its naive tropical analogue using Dressians.

Theorem

The parameter space of n-element matroids over R of global rank r is

 $\varinjlim_{k\geq 0} O_k$

where O_k is a r(n-r) + kn dim'l orthant bundle over $Z_{wc^k}^{trop}$, with w a longest Grassmannian word and c a certain Coxeter element.

Tropical Schubert calculus?

Bott-Samelson varieties

Fix a complete flag \mathcal{F} in \mathbb{C}^n and let $w = s_{i_1} \dots s_{i_\ell}$ be a word in A_{n-1} . The Bott-Samelson variety of w is

$$\begin{split} Z_w = \{ (\mathcal{F}_0, \dots, \mathcal{F}_s) \in \mathcal{F}\ell_n^{s+1} : \mathcal{F}_0 = \mathcal{F}, \\ \mathcal{F}_k \text{ and } \mathcal{F}_{k+1} \text{ agree except in the } i_k \text{-dimensional space} \}. \end{split}$$

Let Z_w^{trop} be its naive tropical analogue using Dressians.

Theorem

The parameter space of n-element matroids over R of global rank r is

 $\varinjlim_{k\geq 0} O_k$

where O_k is a r(n-r) + kn dim'l orthant bundle over $Z_{wc^k}^{trop}$, with w a longest Grassmannian word and c a certain Coxeter element.

Tropical Schubert calculus?

Bott-Samelson varieties exist in any Weyl type:

$$Z_{\mathsf{w}} = \overline{\{(x, e_{i_1}(t_1)x, \dots, e_{i_\ell}(t_\ell)\cdots e_{i_1}(t_1)x)\}} \subseteq (\mathcal{G}/\mathcal{B})^{\ell+1}$$

where the e_i are Chevalley generators.

Tropical Dressians should exist too.

Question Does this have anything to do with a valuation ring anymore?

As for P(M), it has edges in directions of the A_{n+1} roots (in which an A_1 orthogonal to the A_{n-1} has a special role.)

Question A_{n-1} : A_{n+1} :: W : what?

Question Are these two connected?

Thank you!

Fink, Moci Polytopes and moduli of matroids over rings 20 / 20

イロト 不得下 イヨト イヨト

Bott-Samelson varieties exist in any Weyl type:

$$Z_{w} = \overline{\{(x, e_{i_{1}}(t_{1})x, \dots, e_{i_{\ell}}(t_{\ell})\cdots e_{i_{1}}(t_{1})x)\}} \subseteq (G/B)^{\ell+1}$$

where the e_i are Chevalley generators.

Tropical Dressians should exist too.

Question Does this have anything to do with a valuation ring anymore?

As for P(M), it has edges in directions of the A_{n+1} roots (in which an A_1 orthogonal to the A_{n-1} has a special role.)

Question A_{n-1} : A_{n+1} :: W : what?

Question Are these two connected?

Thank you!

Fink, Moci Polytopes and moduli of matroids over rings 20 / 20

Bott-Samelson varieties exist in any Weyl type:

$$Z_{w} = \overline{\{(x, e_{i_{1}}(t_{1})x, \dots, e_{i_{\ell}}(t_{\ell})\cdots e_{i_{1}}(t_{1})x)\}} \subseteq (G/B)^{\ell+1}$$

where the e_i are Chevalley generators.

Tropical Dressians should exist too.

Question Does this have anything to do with a valuation ring anymore?

As for P(M), it has edges in directions of the A_{n+1} roots (in which an A_1 orthogonal to the A_{n-1} has a special role.)

Question A_{n-1} : A_{n+1} :: W : what?

Question Are these two connected?

Thank you!

Fink, Moci Polytopes and moduli of matroids over rings 20 / 20

Bott-Samelson varieties exist in any Weyl type:

$$Z_{w} = \overline{\{(x, e_{i_{1}}(t_{1})x, \dots, e_{i_{\ell}}(t_{\ell})\cdots e_{i_{1}}(t_{1})x)\}} \subseteq (G/B)^{\ell+1}$$

where the e_i are Chevalley generators.

Tropical Dressians should exist too.

Question Does this have anything to do with a valuation ring anymore?

As for P(M), it has edges in directions of the A_{n+1} roots (in which an A_1 orthogonal to the A_{n-1} has a special role.)

Question A_{n-1} : A_{n+1} :: W : what?

Question Are these two connected?

Thank you!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Fink, Moci	Polytopes and moduli of matroids over rings 20 / 2	0
------------	--	---

A bit more on DVRs

There is a bijection between finitely generated modules over a DVR & partitions allowing infinite parts.

$$N_{\lambda} = R \oplus R/\mathfrak{m}^{3} \oplus R/\mathfrak{m}$$
$$\lambda = \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare$$

Example

Theorem (Hall, ...) The number of exact sequences

$$0 \rightarrow N_{\lambda} \rightarrow N_{\nu} \rightarrow N_{\mu} \rightarrow 0$$

up to \cong of sequences is the LR coeff $c_{\lambda\mu}^{\nu}$ (or its infinite-rows analog).

So, quotients by one element give the Pieri rule.

