Tropical cycles and Chow polytopes

Alex Fink

Department of Mathematics University of California, Berkeley

Tropical Geometry in Combinatorics and Algebra MSRI October 16, 2009

Alex Fink (UC Berkeley)

Tropical cycles and Chow polytopes

MSRI, Oct. 16, 2009 1 / 25

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation

Newton polytopes give us a nice combinatorial understanding of tropical hypersurfaces, *matroid polytopes* of tropical linear spaces.

Chow polytopes are the common generalisation.

Do Chow polytopes yield a nice combinatorial understanding of tropical varieties?

Review: Newton polytopes

Given a constant-coefficient hypersurface $V(f) \subseteq \mathbb{P}^{n-1}$, with $f \in \mathbb{K}[x_1, \ldots, x_n]$ homogeneous, $\operatorname{Trop}(X) \subseteq \mathbb{R}^n/\mathbb{1}$ is the codimension 1 part of the normal fan to the Newton polytope of *f*,

Newt(f) = conv{ $m \in (\mathbb{Z}^n)^{\vee} : x^m$ is a monomial of f} $\subseteq (\mathbb{R}^n)^{\vee}$.

If \mathbb{K} is a valued field, the valuations of the coefficients of f induce a *regular subdivision* of Newt(f). Use the *normal complex* to this subdivision instead.

Review: Newton polytopes

Given a constant-coefficient hypersurface $V(f) \subseteq \mathbb{P}^{n-1}$, with $f \in \mathbb{K}[x_1, \ldots, x_n]$ homogeneous, $\operatorname{Trop}(X) \subseteq \mathbb{R}^n/\mathbb{1}$ is the codimension 1 part of the normal fan to the Newton polytope of *f*,

Newt(f) = conv{ $m \in (\mathbb{Z}^n)^{\vee} : x^m$ is a monomial of f} $\subseteq (\mathbb{R}^n)^{\vee}$.

If \mathbb{K} is a valued field, the valuations of the coefficients of *f* induce a *regular subdivision* of Newt(*f*). Use the *normal complex* to this subdivision instead.

Review: Matroid polytopes

Given a constant-coefficient linear space $V(I) \subseteq \mathbb{P}^{n-1}$, with $I \subseteq \mathbb{K}[x_1, \ldots, x_n]$ a linear ideal, $\operatorname{Trop}(X) \subseteq \mathbb{R}^n/\mathbb{1}$ is the union of normals to *loop-free* faces of the matroid polytope of *I*,

$$Q(M_I) = \operatorname{conv}\{\sum_{j\in J} e_J : p_J(I) \neq 0\} \subseteq (\mathbb{R}^n)^{\vee},$$

where $p_J(I)$ are the *Plücker coordinates* of *I*.

If \mathbb{K} is a valued field, the valuations of the coefficients of *I* induce a *regular subdivision* of $Q(M_I)$. Use the *normal complex* to this subdivision instead. e_4

The Chow variety

What about parametrising *classical* subvarieties $X \subseteq \mathbb{P}^{n-1}_{\mathbb{K}}$? Cycles?

Definition

The Chow variety G(d, n, r) is the parameter space for (effective) cycles in \mathbb{P}^{n-1} of dimension d-1 and degree r.

The Chow variety is projective, and has a projective embedding via the *Chow form* R_X :

$$G(d, n, r) \hookrightarrow \mathbb{P}(\mathbb{K}[G(n-d, n)]_r)$$

 $X \mapsto R_X.$

The coordinate ring $\mathbb{K}[G(n-d, n)]$ of the Grassmannian G(n-d, n) has a presentation in Plücker coordinates:

 $\mathbb{K}[G(n-d,n)] = \mathbb{K}\big[\, [J] : J \in \binom{[n]}{n-d} \, \big] \big/ (\text{Plücker relations}).$

Chow polytopes

The torus $(\mathbb{K}^*)^n$ acts on $G(d, n, r) \subseteq \mathbb{K}[G(n - d, n)]$ diagonally. The *weight* of the bracket [*J*] is $e_J := \sum_{j \in J} e_j$. That is,

$$(h_1,\ldots,h_n)\cdot [J]=\prod_{j\in J}h_j[J].$$

The weight of a monomial $\prod_i [J_i]^{m_i}$ is $\sum_i m_i e_{J_i}$.

Definition

The Chow polytope of X, $Chow(X) \subseteq (\mathbb{R}^n)^{\vee}$, is the *weight polytope* of its Chow form R_X :

 $Chow(X) = conv\{weight of m : m a monomial of R_X\}.$

The Chow polytope of X, $\operatorname{Chow}(X) \subseteq (\mathbb{R}^n)^{\vee}$, is the *weight polytope* of its Chow form R_X :

 $\operatorname{Chow}(X) = \operatorname{conv}\{\text{weight of } m : m \text{ a monomial of } R_X\}.$

Examples

- For X a hypersurface V(f), $R_X = f$ and Chow(X) is the Newton polytope.
- For X a *linear space*, $R_X = \sum_J p_J[J]$ is the linear form in the brackets with the Plücker coordinates of X as coefficients, and Chow(X) is the *matroid polytope* of X.

• For X an embedded *toric variety* in \mathbb{P}^{n-1} , Chow(X) is a *secondary polytope* [Gelfand-Kapranov-Zelevinsky].

The Chow polytope of X, $\operatorname{Chow}(X) \subseteq (\mathbb{R}^n)^{\vee}$, is the *weight polytope* of its Chow form R_X :

 $\operatorname{Chow}(X) = \operatorname{conv}\{\text{weight of } m : m \text{ a monomial of } R_X\}.$

Examples

- For X a hypersurface V(f), $R_X = f$ and Chow(X) is the Newton polytope.
- For X a *linear space*, $R_X = \sum_J p_J[J]$ is the linear form in the brackets with the Plücker coordinates of X as coefficients, and Chow(X) is the *matroid polytope* of X.

• For X an embedded *toric variety* in \mathbb{P}^{n-1} , Chow(X) is a *secondary polytope* [Gelfand-Kapranov-Zelevinsky].

The Chow polytope of X, $\operatorname{Chow}(X) \subseteq (\mathbb{R}^n)^{\vee}$, is the *weight polytope* of its Chow form R_X :

 $\operatorname{Chow}(X) = \operatorname{conv}\{\text{weight of } m : m \text{ a monomial of } R_X\}.$

Examples

- For X a hypersurface V(f), $R_X = f$ and Chow(X) is the Newton polytope.
- For X a *linear space*, $R_X = \sum_J p_J[J]$ is the linear form in the brackets with the Plücker coordinates of X as coefficients, and Chow(X) is the *matroid polytope* of X.
- For X an embedded *toric variety* in P^{n−1}, Chow(X) is a *secondary polytope* [Gelfand-Kapranov-Zelevinsky].

The torus action on G(d, n, r) lets us take toric limits: given a one-parameter subgroup $u : \mathbb{K}^* \to (\mathbb{K}^*)^n$, send $x \in G(d, n, r)$ to $\lim_{t\to\infty} u(t) \cdot x$.

These correspond to toric degenerations of cycles in \mathbb{P}^{n-1} .

Theorem (Kapranov–Sturmfels–Zelevinsky)

The face poset of Chow(X) is isomorphic to the poset of toric degenerations of X.

In particular, the vertices of Chow(X) are in bijection with toric degenerations of X that are sums of coordinate (d - 1)-planes $L_J = V(x_j = 0 : j \in J)$. A cycle $\sum_J m_J L_J$ corresponds to the vertex $\sum_J m_J e_J$.

< 日 > < 同 > < 回 > < 回 > < □ > <

The torus action on G(d, n, r) lets us take toric limits: given a one-parameter subgroup $u : \mathbb{K}^* \to (\mathbb{K}^*)^n$, send $x \in G(d, n, r)$ to $\lim_{t\to\infty} u(t) \cdot x$.

These correspond to toric degenerations of cycles in \mathbb{P}^{n-1} .

Theorem (Kapranov–Sturmfels–Zelevinsky)

The face poset of Chow(X) is isomorphic to the poset of toric degenerations of *X*.

In particular, the vertices of Chow(X) are in bijection with toric degenerations of X that are sums of coordinate (d - 1)-planes $L_J = V(x_j = 0 : j \in J)$. A cycle $\sum_J m_J L_J$ corresponds to the vertex $\sum_J m_J e_J$.

イロト 不得 トイヨト イヨト

Suppose (\mathbb{K}, ν) is a valued field, with residue field $\mathbf{k} \hookrightarrow \mathbb{K}$.

Over **k**, the torus $(\mathbf{k}^*)^n \times \mathbf{k}^*$ acts on $G(d, n, r) \subseteq \mathbb{K}[G(n - d, n)]$: brackets [*J*] have weight $(e_J, 0)$, and $a \in \mathbb{K}$ has weight $(0, \nu(a))$.

For a cycle $X \subseteq \mathbb{P}^{n-1}$ this gives us a weight polytope $\Pi \subseteq (\mathbb{R}^{n+1})^{\vee}$. Its vertices are the vertices of Chow(X), lifted according to ν .

Definition

The Chow subdivision $\operatorname{Chow}'(X)$ of X is the regular subdivision of $\operatorname{Chow}(X)$ induced by the lower faces of Π .

Examples: Newton and matroid polytope subdivisions.

The tropical side

Fact

 $\operatorname{Trop}(X)$ is a subcomplex of the normal complex of $\operatorname{Chow}'(X)$.

Trop(X) determines Chow'(X), by orthant-shooting.

Let σ_J be the cone in $\mathbb{R}^n/\mathbb{1}$ with generators $\{e_j : j \in J\}$. For a 0-dimensional tropical variety *C*, let #C be the sum of the multiplicities of the points of *C*.

Theorem (Dickenstein–Feichtner–Sturmfels, F)

Let $u \in \mathbb{R}^n$ be s.t. face_u Chow'(X) is a vertex. Then

face_{*u*} Chow'(X) =
$$\sum_{J \in \binom{[n]}{n-d}} #([u + \sigma_J] \cdot \operatorname{Trop} X) e_J.$$

< ロ > < 同 > < 回 > < 回 >

Fact

 $\operatorname{Trop}(X)$ is a subcomplex of the normal complex of $\operatorname{Chow}'(X)$.

Trop(X) determines Chow'(X), by orthant-shooting.

Let σ_J be the cone in $\mathbb{R}^n/\mathbb{1}$ with generators $\{e_j : j \in J\}$. For a 0-dimensional tropical variety *C*, let #C be the sum of the multiplicities of the points of *C*.

Theorem (Dickenstein–Feichtner–Sturmfels, F)

Let $u \in \mathbb{R}^n$ be s.t. face_u Chow'(X) is a vertex. Then

face_{*u*} Chow'(X) =
$$\sum_{J \in \binom{[n]}{n-d}} \#([u + \sigma_J] \cdot \operatorname{Trop} X) \boldsymbol{e}_J.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

When X is a hypersurface, this is just *ray-shooting*.

Example

Alex Fink (UC Berkeley)

Tropical cycles and Chow polytopes

When X is a hypersurface, this is just *ray-shooting*.

Example

Alex Fink (UC Berkeley)

Tropical cycles and Chow polytopes

When X is a hypersurface, this is just *ray-shooting*.

Example

Alex Fink (UC Berkeley)

Tropical cycles and Chow polytopes

When X is a hypersurface, this is just *ray-shooting*.

Example Here $X = V(xy^2 + x^2z + t^2y^2z + yz^2 + tz^3) \subseteq \mathbb{P}^2$. 2 (1, 2, 0)

э

< 日 > < 同 > < 回 > < 回 > < □ > <

When X is a hypersurface, this is just *ray-shooting*.

Example

Alex Fink (UC Berkeley)

Tropical cycles and Chow polytopes

When X is a hypersurface, this is just *ray-shooting*.

Example

Alex Fink (UC Berkeley)

Tropical cycles and Chow polytopes

When X is a hypersurface, this is just *ray-shooting*.

Example

Alex Fink (UC Berkeley)

Tropical cycles and Chow polytopes

When X is a hypersurface, this is just *ray-shooting*.

Example

Alex Fink (UC Berkeley)

Tropical cycles and Chow polytopes

When X is a hypersurface, this is just *ray-shooting*.

マロト イラト イラ

When X is a hypersurface, this is just *ray-shooting*.

4 **A** N A **B** N A **B** N

In general we shoot higher-dimensional cones:

Tropical cycles and Chow polytopes

MSRI, Oct. 16, 2009 12 / 25

Until now we've only considered tropicalisations. We'd like to work with abstract tropical objects:

Definition

A tropical cycle in $\mathbb{R}^{n-1} = \mathbb{R}^n/\mathbb{1}$ is an element of

{pure integral polyhedral complexes w/ integer weights satisfying the balancing condition } / (refinement of complexes).

A tropical variety is a tropical cycle with all weights nonnegative. It is a fan cycle if the underlying complex is a fan.

< 日 > < 同 > < 回 > < 回 > < □ > <

Until now we've only considered tropicalisations. We'd like to work with abstract tropical objects:

Definition

A tropical cycle in $\mathbb{R}^{n-1} = \mathbb{R}^n/\mathbb{1}$ is an element of

 $\left\{ \begin{array}{l} \text{pure integral polyhedral complexes w/ integer} \\ \text{weights satisfying the balancing condition} \end{array} \right\} \left/ \left(\begin{array}{c} \text{refinement of} \\ \text{complexes} \end{array} \right). \right.$

A tropical variety is a tropical cycle with all weights nonnegative. It is a fan cycle if the underlying complex is a fan.

Let Z^i be the \mathbb{Z} -module of tropical cycles in \mathbb{R}^{n-1} of *codimension i*, and $Z^* = \bigoplus_i Z^i$.

For Σ a polyhedral complex, let $Z^*(\Sigma)$ be the finite-dimensional submodule of cycles whose facets are faces of Σ . (This is not Kaiserslautern notation!)

イロト 不得 トイヨト イヨト

For tropical cycles *C* and *D*, let $C \cdot D$ denote the *(stable) intersection* of tropical intersection theory: $C \cdot D = \lim_{\epsilon \to 0} C \cap (D \text{ displaced by } \epsilon)$ with lattice multiplicities.

Stable intersection makes Z^* into a graded ring.

Fan tropical cycles and their intersection product make other appearances:

 as elements of the direct limit of Chow cohomology rings of toric varieties [Fulton-Sturmfels];

• as *Minkowski weights*, one representation of the elements of the *polytope algebra* of Peter McMullen.

3

イロト 不得 トイヨト イヨト

For tropical cycles *C* and *D*, let $C \cdot D$ denote the *(stable) intersection* of tropical intersection theory: $C \cdot D = \lim_{\epsilon \to 0} C \cap (D \text{ displaced by } \epsilon)$ with lattice multiplicities.

Stable intersection makes Z^* into a graded ring.

Fan tropical cycles and their intersection product make other appearances:

- as elements of the direct limit of Chow cohomology rings of toric varieties [Fulton-Sturmfels];
- as *Minkowski weights*, one representation of the elements of the *polytope algebra* of Peter McMullen.

For tropical cycles *C* and *D*, let $C \cdot D$ denote the *(stable) intersection* of tropical intersection theory: $C \cdot D = \lim_{\epsilon \to 0} C \cap (D \text{ displaced by } \epsilon)$ with lattice multiplicities.

Stable intersection makes Z^* into a graded ring.

Fan tropical cycles and their intersection product make other appearances:

- as elements of the direct limit of Chow cohomology rings of toric varieties [Fulton-Sturmfels];
- as *Minkowski weights*, one representation of the elements of the *polytope algebra* of Peter McMullen.

The stable Minkowski sum

The *Minkowski sum* of sets $S, T \subseteq \mathbb{R}^{n-1}$ is $\{s + t : s \in S, t \in T\}$.

For $\sigma \subseteq \mathbb{R}^{n-1}$, let $N_{\sigma} = \mathbb{Z}^{n-1} \cap$ the \mathbb{R} -subspace generated by a translate of σ containing 0. Define multiplicities

 $\mu_{\sigma,\tau} = \begin{cases} [N_{\sigma+\tau} : N_{\sigma} + N_{\tau}] & \text{if } \dim(\sigma+\tau) = \dim\sigma + \dim\tau \\ 0 & \text{otherwise.} \end{cases}$

This is the same as for tropical intersection, except for the condition.

Definition

The stable Minkowski sum $C \boxplus D$ of tropical cycles C and D is their Minkowski sum with the right multiplicities: for every facet σ of C with mult m_{σ} and τ of D with mult m_{τ} , $C \boxplus D$ has a facet $\sigma + \tau$ with mult $\mu_{\sigma,\tau}m_{\sigma}m_{\tau}$.

Proposition

The stable Minkowski sum of tropical cycles is a tropical cycle.

Alex Fink (UC Berkeley)

Tropical cycles and Chow polytopes

Let the tropical Chow hypersurface of $X \subseteq \mathbb{P}^{n-1}$ be the codimension 1 part of the normal complex to Chow'(X).

Let \mathcal{L} be the canonical tropical hyperplane Trop $V(x_1 + \ldots + x_n)$, and $\mathcal{L}_{(i)}$ its dimension *i* skeleton.

For a tropical cycle X let X^{refl} be the reflection of X through the origin.

Main theorem 1 (F)

Let X be a codimension k cycle in \mathbb{P}^{n-1} . The tropical Chow hypersurface of X is $\operatorname{Trop}(X) \boxplus (\mathcal{L}_{(k-1)})^{\operatorname{refl}}$.

Definition

Define $ch: Z^k \to Z^1$ by $ch(C) = C \boxplus (\mathcal{L}_{(k-1)})^{\text{refl}}$ for a tropical cycle C.

Alex Fink (UC Berkeley)

イロン イロン イヨン イヨン ニヨー

Let the tropical Chow hypersurface of $X \subseteq \mathbb{P}^{n-1}$ be the codimension 1 part of the normal complex to Chow'(X).

Let \mathcal{L} be the canonical tropical hyperplane Trop $V(x_1 + \ldots + x_n)$, and $\mathcal{L}_{(i)}$ its dimension *i* skeleton.

For a tropical cycle X let X^{refl} be the reflection of X through the origin.

Main theorem 1 (F)

Let X be a codimension k cycle in \mathbb{P}^{n-1} . The tropical Chow hypersurface of X is $\operatorname{Trop}(X) \boxplus (\mathcal{L}_{(k-1)})^{\operatorname{refl}}$.

Definition

Define $ch: Z^k \to Z^1$ by $ch(C) = C \boxplus (\mathcal{L}_{(k-1)})^{\text{refl}}$ for a tropical cycle *C*.

Computing a Chow hypersurface

Computing a Chow hypersurface

Example

In our running example:

Tropical cycles and Chow polytopes

Aside: \boxplus compared with intersection

In the exact sequence

$$0 \to \mathbb{R}^{n-1} \xrightarrow{\iota} \mathbb{R}^{n-1} \times \mathbb{R}^{n-1} \xrightarrow{\phi} \mathbb{R}^{n-1} \to 0$$

where ι is the inclusion along the diagonal and ϕ is subtraction,

$$egin{aligned} m{C} \cdot m{D} &= \iota^*(m{C} imes m{D}) \ m{C} oxplus m{D}^{ ext{refl}} &= \phi_*(m{C} imes m{D}). \end{aligned}$$

If *C* and *D* have complimentary dimensions,

 $\#(C \cdot D) = \operatorname{mult}(C \boxplus D^{\operatorname{refl}}).$

The degree of a tropical cycle *C* of codimension *k* is deg $C := #(C \cdot \mathcal{L}_{(k)})$.

Proposition

The degree of ch(C) is $codim C \deg C$.

Definition

A tropical linear space is a tropical variety of degree 1.

A tropical linear space is a tropical variety of degree 1.

Others (e.g. Speyer) have taken tropical linear spaces in \mathbb{TP}^{n-1} to be given by regular *matroid subdivisions*, described by Plücker vectors $(p_J : J \in {[n] \choose n-d})$.

Main theorem 2 (Mikhalkin-Sturmfels-Ziegler; F)

Every tropical linear space arises from a matroid subdivision. (That is, these definitions are equivalent.)

Matroid subdivision \Rightarrow linear space is known:

$$(p_J) \mapsto \bigcap_{|J|=n-d+1} \operatorname{Trop} V(\bigoplus_{j\in K} a_{K\setminus j} \odot x_j)$$

This is the intersection of several hyperplanes, hence degree 1.

Sketch of proof: linear space \Rightarrow matroid subdivision

Let *C* be a tropical linear space. We will construct the polytope subdivision Σ normal to *ch*(*C*).

(Thus if C = Trop(X), we will construct Chow'(X). Good.)

Using relationships between \boxplus and \cdot , show that Σ has $\{0, 1\}$ -vector vertices and edge directions $e_i - e_j$. Thus Σ is a matroid polytope subdivision [Gelfand-Goresky-MacPherson-Serganova].

Why is Σ the right subdivision? We should be able to recover *C* from Σ by taking the normals to the *loop-free* faces [Ardila-Klivans].

Assume *C* has no lineality. Then: normal to a loop-free face in $\Sigma \Leftrightarrow$ contains no ray in a direction $-e_i$; *C* contains no rays in directions $-e_i$; every ray of $(\mathcal{L}_{(k)})^{\text{refl}}$ is in a direction $-e_i$.

The kernel of ch

 $ch: Z^k \to Z^1, C \mapsto C \boxplus (\mathcal{L}_{(k)})^{\text{refl}}$ is a linear map. In each module Z^k of tropical cycles lies a pointed cone of varieties Z_{eff}^k , and we have $ch(Z_{\text{eff}}^k) \subseteq Z_{\text{eff}}^1$.

Fact

ch is not injective. Thus, Chow polytope subdivisions do not determine tropical varieties, in general.

Question 3

Describe the kernel of ch, and the fibers of its restriction to varieties.

Perhaps easier with fixed complexes, $ch: Z^k(\Sigma) \to Z^1(\Sigma')$.

Conjecture

ch is injective for curves.

Alex Fink (UC Berkeley)

< 日 > < 同 > < 回 > < 回 > < □ > <

The kernel of ch

 $ch: Z^k \to Z^1, C \mapsto C \boxplus (\mathcal{L}_{(k)})^{\text{refl}}$ is a linear map. In each module Z^k of tropical cycles lies a pointed cone of varieties Z_{eff}^k , and we have $ch(Z_{\text{eff}}^k) \subseteq Z_{\text{eff}}^1$.

Fact

ch is not injective. Thus, Chow polytope subdivisions do not determine tropical varieties, in general.

Question 3

Describe the kernel of *ch*, and the fibers of its restriction to varieties.

Perhaps easier with fixed complexes, $ch: Z^k(\Sigma) \to Z^1(\Sigma')$.

Conjecture

ch is injective for curves.

Alex Fink (UC Berkeley)

The kernel of ch

 $ch: Z^k \to Z^1, C \mapsto C \boxplus (\mathcal{L}_{(k)})^{\text{refl}}$ is a linear map. In each module Z^k of tropical cycles lies a pointed cone of varieties Z_{eff}^k , and we have $ch(Z_{\text{eff}}^k) \subseteq Z_{\text{eff}}^1$.

Fact

ch is not injective. Thus, Chow polytope subdivisions do not determine tropical varieties, in general.

Question 3

Describe the kernel of *ch*, and the fibers of its restriction to varieties.

Perhaps easier with fixed complexes, $ch: Z^k(\Sigma) \to Z^1(\Sigma')$.

Conjecture

ch is injective for curves.

Alex Fink (UC Berkeley)

-

イロト 不得 トイヨト イヨト

Some elements of ker ch: what's the fan?

Let $\mathcal{F}_n \subseteq \mathbb{R}^{n-1}$ be the normal fan of the *permutohedron*, i.e. the fan of the type *A* reflection arrangement, the *braid arrangement*, i.e. the common refinement of all normal fans of matroid polytopes.

The ray generators of \mathcal{F}_n are $e_J = \sum_{j \in J} e_j$ for all $J \subsetneq [n], J \neq \emptyset$. Its cones are generated by chains $\{e_{J_1}, \ldots, e_{J_k} : J_1 \subseteq \cdots \subseteq J_k\}$.

The ring $Z^*(\mathcal{F}_n)$ is the cohomology ring of a generic torus orbit in the flag variety.

 $\dim Z^*(\mathcal{F}_n) = n!, \text{ and } \dim Z^k(\mathcal{F}_n) = \frac{n \setminus k}{2} = \frac{n \setminus k}{2}$

Some elements of ker ch: what's the fan?

Let $\mathcal{F}_n \subseteq \mathbb{R}^{n-1}$ be the normal fan of the *permutohedron*, i.e. the fan of the type *A* reflection arrangement, the *braid arrangement*, i.e. the common refinement of all normal fans of matroid polytopes.

The ray generators of \mathcal{F}_n are $e_J = \sum_{j \in J} e_j$ for all $J \subsetneq [n], J \neq \emptyset$. Its cones are generated by chains $\{e_{J_1}, \ldots, e_{J_k} : J_1 \subseteq \cdots \subseteq J_k\}$.

The ring $Z^*(\mathcal{F}_n)$ is the cohomology ring of a generic torus orbit in the flag variety.

	- 	$n \setminus k$	0	1	2	3	4	5	
		1	1						
$\dim \mathbb{Z}^*(\mathcal{F}_n) = n!, \text{ and}$	$\dim \mathbb{Z}^n(\mathcal{F}_n)$	2	1	1					
the number of permutations of $[n]$ with <i>k</i> descents.		3	1	4	1				
		4	1	11	11	1			
		5	1	26	66	26	1		
		6	1	57	302	302	57	1	
						→ E →	₹	ଚବଙ	
Alex Fink (UC Berkeley)	Tropical cycles and Chow polytopes				MSRI, Oct. 16, 2009 23 / 2				

Tropical varieties with the same Chow polytope

For any cone $\sigma = \mathbb{R}_{\geq 0} \{ e_{J_1}, \dots, e_{J_k} \}$ of \mathcal{F}_n and $\sigma_{J'}^{\text{refl}} = \mathbb{R}_{\geq 0} \{ -e_j : j \in J' \}$, the sum $\sigma \boxplus \sigma_{J'}^{\text{refl}}$ is again a union of cones of \mathcal{F}_n .

So $ch(Z^k(\mathcal{F}_n)) \subseteq Z^1(\mathcal{F}_n)$. But dim $Z^k(\mathcal{F}_n) > \dim Z^1(\mathcal{F}_n)$ for 1 < k < n-2.

Example

For (n, k) = (5, 2), 66 > 26 and the kernel is 40-dimensional. Two tropical varieties in \mathbb{R}^4 of dim 2 with equal Chow polytope are

Tropical varieties with the same Chow polytope

For any cone $\sigma = \mathbb{R}_{\geq 0} \{ e_{J_1}, \dots, e_{J_k} \}$ of \mathcal{F}_n and $\sigma_{J'}^{\text{refl}} = \mathbb{R}_{\geq 0} \{ -e_j : j \in J' \}$, the sum $\sigma \boxplus \sigma_{J'}^{\text{refl}}$ is again a union of cones of \mathcal{F}_n .

So $ch(Z^k(\mathcal{F}_n)) \subseteq Z^1(\mathcal{F}_n)$. But dim $Z^k(\mathcal{F}_n) > \dim Z^1(\mathcal{F}_n)$ for 1 < k < n-2.

Example

For (n, k) = (5, 2), 66 > 26 and the kernel is 40-dimensional. Two tropical varieties in \mathbb{R}^4 of dim 2 with equal Chow polytope are

Alex Fink (UC Berkeley)

Tropical cycles and Chow polytopes

Tropical varieties are "dual" to their Chow subdivisions.

Trop var ~> Chow subdiv has a nice combinatorial rule, in terms of stable Minkowski sum of tropical cycles.

Chow subdiv ~> trop var fails interestingly to be well-defined.

Thank you!

Tropical varieties are "dual" to their Chow subdivisions.

Trop var ~> Chow subdiv has a nice combinatorial rule, in terms of stable Minkowski sum of tropical cycles.

Chow subdiv ~> trop var fails interestingly to be well-defined.

Thank you!

4 **A** N A **B** N A **B** N