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Motivation

Newton polytopes give us a nice combinatorial understanding of
tropical hypersurfaces, matroid polytopes of tropical linear spaces.

Chow polytopes are the common generalisation.

Do Chow polytopes yield a nice combinatorial understanding of
tropical varieties?

V ((t6− t5− t4− t3 + t2 +
t)x +(−t6 +2t3−1)y +
(−t2 − t + 1)z + (t5 +
t4 − t3)w ,
(t5−t3−t2+1)yz+tz2+
(t6 − t5 − t3 + t2)yw +
(−t4 + t3 − t − 1)zw +
(−t6 + t4 + t3)w2) ⊆ P3

Alex Fink (UC Berkeley) Tropical cycles and Chow polytopes MSRI, Oct. 16, 2009 2 / 25



Review: Newton polytopes

Given a constant-coefficient hypersurface V (f ) ⊆ Pn−1, with
f ∈ K[x1, . . . , xn] homogeneous, Trop(X ) ⊆ Rn/1 is the codimension 1
part of the normal fan to the Newton polytope of f ,

Newt(f ) = conv{m ∈ (Zn)∨ : xm is a monomial of f} ⊆ (Rn)∨.

If K is a valued field, the valuations of the coefficients of f induce a
regular subdivision of Newt(f ). Use the normal complex to this
subdivision instead.

xy2+x2z+y2z+yz2+z3

2

2

Alex Fink (UC Berkeley) Tropical cycles and Chow polytopes MSRI, Oct. 16, 2009 3 / 25



Review: Newton polytopes

Given a constant-coefficient hypersurface V (f ) ⊆ Pn−1, with
f ∈ K[x1, . . . , xn] homogeneous, Trop(X ) ⊆ Rn/1 is the codimension 1
part of the normal fan to the Newton polytope of f ,

Newt(f ) = conv{m ∈ (Zn)∨ : xm is a monomial of f} ⊆ (Rn)∨.

If K is a valued field, the valuations of the coefficients of f induce a
regular subdivision of Newt(f ). Use the normal complex to this
subdivision instead.

xy2+x2z+t2y2z+yz2+tz3

2

Alex Fink (UC Berkeley) Tropical cycles and Chow polytopes MSRI, Oct. 16, 2009 3 / 25



Review: Matroid polytopes

Given a constant-coefficient linear space V (I) ⊆ Pn−1, with
I ⊆ K[x1, . . . , xn] a linear ideal, Trop(X ) ⊆ Rn/1 is the union of normals
to loop-free faces of the matroid polytope of I,

Q(MI) = conv{
∑

j∈J eJ : pJ(I) 6= 0} ⊆ (Rn)∨,

where pJ(I) are the Plücker coordinates of I.
If K is a valued field, the valuations of the coefficients of I induce a
regular subdivision of Q(MI). Use the normal complex to this
subdivision instead.

1001
1010

1010

1010

0011

1100

01101001

0110

0101

1001 0101
0110

0101

e1e2

e3

e4

Alex Fink (UC Berkeley) Tropical cycles and Chow polytopes MSRI, Oct. 16, 2009 4 / 25



The Chow variety

What about parametrising classical subvarieties X ⊆ Pn−1
K ? Cycles?

Definition
The Chow variety G(d , n, r) is the parameter space for (effective)
cycles in Pn−1 of dimension d − 1 and degree r .

The Chow variety is projective, and has a projective embedding via the
Chow form RX :

G(d , n, r) ↪→ P(K[G(n − d , n)]r )

X 7→ RX .

The coordinate ring K[G(n − d , n)] of the Grassmannian G(n − d , n)
has a presentation in Plücker coordinates:

K[G(n − d , n)] = K
[
[J] : J ∈

( [n]
n−d

) ]/
(Plücker relations).
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Chow polytopes

The torus (K∗)n acts on G(d , n, r) ⊆ K[G(n − d , n)] diagonally.

The weight of the bracket [J] is eJ :=
∑

j∈J ej . That is,

(h1, . . . , hn) · [J] =
∏
j∈J

hj [J].

The weight of a monomial
∏

i [Ji ]
mi is

∑
i mieJi .

Definition
The Chow polytope of X , Chow(X ) ⊆ (Rn)∨, is the weight polytope of
its Chow form RX :

Chow(X ) = conv{weight of m : m a monomial of RX}.
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Chow polytopes

Definition
The Chow polytope of X , Chow(X ) ⊆ (Rn)∨, is the weight polytope of
its Chow form RX :

Chow(X ) = conv{weight of m : m a monomial of RX}.

Examples

For X a hypersurface V (f ), RX = f and Chow(X ) is the Newton
polytope.
For X a linear space, RX =

∑
J pJ [J] is the linear form in the

brackets with the Plücker coordinates of X as coefficients, and
Chow(X ) is the matroid polytope of X .
For X an embedded toric variety in Pn−1, Chow(X ) is a secondary
polytope [Gelfand-Kapranov-Zelevinsky].
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Faces of Chow polytopes

The torus action on G(d , n, r) lets us take toric limits: given a
one-parameter subgroup u : K∗ → (K∗)n, send x ∈ G(d , n, r) to
limt→∞ u(t) · x .

These correspond to toric degenerations of cycles in Pn−1.

Theorem (Kapranov–Sturmfels–Zelevinsky)

The face poset of Chow(X ) is isomorphic to the poset of toric
degenerations of X .

In particular, the vertices of Chow(X ) are in bijection with toric
degenerations of X that are sums of coordinate (d − 1)-planes
LJ = V (xj = 0 : j ∈ J).
A cycle

∑
J mJLJ corresponds to the vertex

∑
J mJeJ .
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Over a valued field

Suppose (K, ν) is a valued field, with residue field k ↪→ K.

Over k, the torus (k∗)n × k∗ acts on G(d , n, r) ⊆ K[G(n − d , n)]:
brackets [J] have weight (eJ , 0), and a ∈ K has weight (0, ν(a)).

For a cycle X ⊆ Pn−1 this gives us a weight polytope Π ⊆ (Rn+1)∨.
Its vertices are the vertices of Chow(X ), lifted according to ν.

Definition
The Chow subdivision Chow′(X ) of X is the regular subdivision
of Chow(X ) induced by the lower faces of Π.

Examples: Newton and matroid polytope subdivisions.
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The tropical side

Fact
Trop(X ) is a subcomplex of the normal complex of Chow′(X ).

Trop(X ) determines Chow′(X ), by orthant-shooting.

Let σJ be the cone in Rn/1 with generators {ej : j ∈ J}.
For a 0-dimensional tropical variety C, let #C be the sum of the
multiplicities of the points of C.

Theorem (Dickenstein–Feichtner–Sturmfels, F)

Let u ∈ Rn be s.t. faceu Chow′(X ) is a vertex. Then

faceu Chow′(X ) =
∑

J∈( [n]
n−d)

#([u + σJ ] · Trop X )eJ .
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Orthant-shooting

When X is a hypersurface, this is just ray-shooting.

Example

Here X = V (xy2 + x2z + t2y2z + yz2 + tz3) ⊆ P2.

2
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Orthant-shooting

When X is a hypersurface, this is just ray-shooting.
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Orthant-shooting

When X is a hypersurface, this is just ray-shooting.

Example
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Orthant-shooting

In general we shoot higher-dimensional cones:

Examples

(1, 1, 2, 0)

e1
e2

e3

e4
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Tropical cycles

Until now we’ve only considered tropicalisations. We’d like to work with
abstract tropical objects:

Definition

A tropical cycle in Rn−1 = Rn/1 is an element of{
pure integral polyhedral complexes w/ integer
weights satisfying the balancing condition

} /(
refinement of
complexes

)
.

A tropical variety is a tropical cycle with all weights nonnegative.
It is a fan cycle if the underlying complex is a fan.

Let Z i be the Z-module of tropical cycles in Rn−1 of codimension i , and
Z ∗ =

⊕
i Z i .

For Σ a polyhedral complex, let Z ∗(Σ) be the finite-dimensional
submodule of cycles whose facets are faces of Σ. (This is not
Kaiserslautern notation!)
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The intersection product on tropical cycles

For tropical cycles C and D, let C ·D denote the (stable) intersection of
tropical intersection theory: C · D = limε→0 C ∩ (D displaced by ε) with
lattice multiplicities.
Stable intersection makes Z ∗ into a graded ring.

Fan tropical cycles and their intersection product make other
appearances:

as elements of the direct limit of Chow cohomology rings of toric
varieties [Fulton-Sturmfels];
as Minkowski weights, one representation of the elements of the
polytope algebra of Peter McMullen.
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The stable Minkowski sum

The Minkowski sum of sets S, T ⊆ Rn−1 is {s + t : s ∈ S, t ∈ T}.

For σ ⊆ Rn−1, let Nσ = Zn−1 ∩ the R-subspace generated by a
translate of σ containing 0. Define multiplicities

µσ,τ =

{
[Nσ+τ : Nσ + Nτ ] if dim(σ + τ) = dim σ + dim τ
0 otherwise.

This is the same as for tropical intersection, except for the condition.

Definition
The stable Minkowski sum C � D of tropical cycles C and D is their
Minkowski sum with the right multiplicities: for every facet σ of C with
mult mσ and τ of D with mult mτ , C � D has a facet σ + τ with mult
µσ,τmσmτ .

Proposition
The stable Minkowski sum of tropical cycles is a tropical cycle.
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Orthant-shooting revisited

Definition

Let the tropical Chow hypersurface of X ⊆ Pn−1 be the codimension 1
part of the normal complex to Chow′(X ).

Let L be the canonical tropical hyperplane Trop V (x1 + . . . + xn),
and L(i) its dimension i skeleton.
For a tropical cycle X let X refl be the reflection of X through the origin.

Main theorem 1 (F)

Let X be a codimension k cycle in Pn−1. The tropical Chow
hypersurface of X is Trop(X )� (L(k−1))

refl.

Definition

Define ch : Z k → Z 1 by ch(C) = C � (L(k−1))
refl for a tropical cycle C.
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Computing a Chow hypersurface

Example
In our running example:

� −e1
−e2

−e3

−e4

=
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Computing a Chow hypersurface

Example
In our running example:
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Aside: � compared with intersection

In the exact sequence

0 → Rn−1 ι→ Rn−1 × Rn−1 φ→ Rn−1 → 0

where ι is the inclusion along the diagonal and φ is subtraction,

C · D = ι∗(C × D)

C � Drefl = φ∗(C × D).

If C and D have complimentary dimensions,

#(C · D) = mult(C � Drefl).
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Degree

Definition
The degree of a tropical cycle C of codimension k is
deg C := #(C · L(k)).

Proposition

The degree of ch(C) is codim C deg C.

Definition
A tropical linear space is a tropical variety of degree 1.
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Tropical linear spaces

Definition
A tropical linear space is a tropical variety of degree 1.

Others (e.g. Speyer) have taken tropical linear spaces in TPn−1 to be
given by regular matroid subdivisions, described by Plücker vectors
(pJ : J ∈

( [n]
n−d

)
).

Main theorem 2 (Mikhalkin–Sturmfels–Ziegler; F)

Every tropical linear space arises from a matroid subdivision. (That is,
these definitions are equivalent.)

Matroid subdivision ⇒ linear space is known:

(pJ) 7→
⋂

|J|=n−d+1

Trop V (
⊕

j∈K aK\j � xj)

This is the intersection of several hyperplanes, hence degree 1.
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Sketch of proof: linear space ⇒ matroid subdivision

Let C be a tropical linear space. We will construct the polytope
subdivision Σ normal to ch(C).
(Thus if C = Trop(X ), we will construct Chow′(X ). Good.)

Using relationships between � and ·, show that Σ has {0, 1}-vector
vertices and edge directions ei − ej . Thus Σ is a matroid polytope
subdivision [Gelfand-Goresky-MacPherson-Serganova].

Why is Σ the right subdivision? We should be able to recover C from Σ
by taking the normals to the loop-free faces [Ardila-Klivans].

Assume C has no lineality. Then:
normal to a loop-free face in Σ ⇔ contains no ray in a direction −ei ;
C contains no rays in directions −ei ;
every ray of (L(k))

refl is in a direction −ei .
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The kernel of ch

ch : Z k → Z 1, C 7→ C � (L(k))
refl is a linear map.

In each module Z k of tropical cycles lies a pointed cone of varieties
Z k

eff, and we have ch(Z k
eff) ⊆ Z 1

eff.

Fact
ch is not injective. Thus, Chow polytope subdivisions do not determine
tropical varieties, in general.

Question 3
Describe the kernel of ch, and the fibers of its restriction to varieties.

Perhaps easier with fixed complexes, ch : Z k (Σ) → Z 1(Σ′).

Conjecture
ch is injective for curves.
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Some elements of ker ch: what’s the fan?

Let Fn ⊆ Rn−1 be the normal fan of the permutohedron,
i.e. the fan of the type A reflection arrangement, the braid arrangement,
i.e. the common refinement of all normal fans of matroid polytopes.

The ray generators of Fn are eJ =
∑

j∈J ej for all J ( [n], J 6= ∅.
Its cones are generated by chains {eJ1 , . . . , eJk : J1 ⊆ · · · ⊆ Jk}.

The ring Z ∗(Fn) is the cohomology ring of a generic torus orbit in the
flag variety.

dim Z ∗(Fn) = n!, and dim Z k (Fn)
is the Eulerian number E(n, k), i.e.
the number of permutations of [n]
with k descents.

n \ k 0 1 2 3 4 5
1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
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Tropical varieties with the same Chow polytope

For any cone σ = R≥0{eJ1 , . . . , eJk} of Fn and
σJ′

refl = R≥0{−ej : j ∈ J ′}, the sum σ � σJ′
refl is again a union of cones

of Fn.

So ch(Z k (Fn)) ⊆ Z 1(Fn). But dim Z k (Fn) > dim Z 1(Fn) for
1 < k < n − 2.

Example

For (n, k) = (5, 2), 66 > 26 and the kernel is 40-dimensional.
Two tropical varieties in R4 of dim 2 with equal Chow polytope are
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Take-home message

Tropical varieties are “dual” to their Chow subdivisions.
Trop var Chow subdiv has a nice combinatorial rule, in terms of

stable Minkowski sum of tropical cycles.
Chow subdiv trop var fails interestingly to be well-defined.

Thank you!
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