Tropical cycles and Chow polytopes

Alex Fink
Department of Mathematics
University of California, Berkeley

Tropical Geometry in Combinatorics and Algebra MSRI

October 16, 2009

Motivation

Newton polytopes give us a nice combinatorial understanding of tropical hypersurfaces, matroid polytopes of tropical linear spaces.
Chow polytopes are the common generalisation.
Do Chow polytopes yield a nice combinatorial understanding of tropical varieties?
$V\left(\left(t^{6}-t^{5}-t^{4}-t^{3}+t^{2}+\right.\right.$ $t) x+\left(-t^{6}+2 t^{3}-1\right) y+$ $\left(-t^{2}-t+1\right) z+\left(t^{5}+\right.$ $\left.t^{4}-t^{3}\right) w$,
$\left(t^{5}-t^{3}-t^{2}+1\right) y z+t z^{2}+$ $\left(t^{6}-t^{5}-t^{3}+t^{2}\right) y w+$ $\left(-t^{4}+t^{3}-t-1\right) z w+$ $\left.\left(-t^{6}+t^{4}+t^{3}\right) w^{2}\right) \subseteq \mathbb{P}^{3}$

Review: Newton polytopes

Given a constant-coefficient hypersurface $V(f) \subseteq \mathbb{P}^{n-1}$, with $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ homogeneous, $\operatorname{Trop}(X) \subseteq \mathbb{R}^{n} / \mathbb{1}$ is the codimension 1 part of the normal fan to the Newton polytope of f,

$$
\operatorname{Newt}(f)=\operatorname{conv}\left\{m \in\left(\mathbb{Z}^{n}\right)^{\vee}: x^{m} \text { is a monomial of } f\right\} \subseteq\left(\mathbb{R}^{n}\right)^{\vee}
$$

If \mathbb{K} is a valued field, the valuations of the coefficients of f induce a regular subdivision of $\operatorname{Newt}(f)$. Use the normal complex to this subdivision instead.

$$
x y^{2}+x^{2} z+y^{2} z+y z^{2}+z^{3}
$$

Review: Newton polytopes

Given a constant-coefficient hypersurface $V(f) \subseteq \mathbb{P}^{n-1}$, with $f \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ homogeneous, $\operatorname{Trop}(X) \subseteq \mathbb{R}^{n} / \mathbb{1}$ is the codimension 1 part of the normal fan to the Newton polytope of f,

$$
\operatorname{Newt}(f)=\operatorname{conv}\left\{m \in\left(\mathbb{Z}^{n}\right)^{\vee}: x^{m} \text { is a monomial of } f\right\} \subseteq\left(\mathbb{R}^{n}\right)^{\vee}
$$

If \mathbb{K} is a valued field, the valuations of the coefficients of f induce a regular subdivision of $\operatorname{Newt}(f)$. Use the normal complex to this subdivision instead.

$x y^{2}+x^{2} z+\mathbf{t}^{2} y^{2} z+y z^{2}+\mathbf{t} z^{3}$

Review: Matroid polytopes

Given a constant-coefficient linear space $V(I) \subseteq \mathbb{P}^{n-1}$, with $I \subseteq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ a linear ideal, $\operatorname{Trop}(X) \subseteq \mathbb{R}^{n} / \mathbb{1}$ is the union of normals to loop-free faces of the matroid polytope of I,

$$
Q\left(M_{l}\right)=\operatorname{conv}\left\{\sum_{j \in J} e_{J}: p_{J}(I) \neq 0\right\} \subseteq\left(\mathbb{R}^{n}\right)^{\vee}
$$

where $p_{J}(I)$ are the Plücker coordinates of I.
If \mathbb{K} is a valued field, the valuations of the coefficients of I induce a regular subdivision of $Q\left(M_{l}\right)$. Use the normal complex to this subdivision instead.

The Chow variety

What about parametrising classical subvarieties $X \subseteq \mathbb{P}_{\mathbb{K}}^{n-1}$? Cycles?

Definition

The Chow variety $G(d, n, r)$ is the parameter space for (effective) cycles in \mathbb{P}^{n-1} of dimension $d-1$ and degree r.

The Chow variety is projective, and has a projective embedding via the Chow form R_{X} :

$$
\begin{aligned}
G(d, n, r) & \hookrightarrow \mathbb{P}\left(\mathbb{K}[G(n-d, n)]_{r}\right) \\
X & \mapsto R_{X} .
\end{aligned}
$$

The coordinate ring $\mathbb{K}[G(n-d, n)]$ of the Grassmannian $G(n-d, n)$ has a presentation in Plücker coordinates:

$$
\mathbb{K}[G(n-d, n)]=\mathbb{K}\left[[J]: J \in\binom{[n]}{n-d}\right] / \text { (Plücker relations). }
$$

Chow polytopes

The torus $\left(\mathbb{K}^{*}\right)^{n}$ acts on $G(d, n, r) \subseteq \mathbb{K}[G(n-d, n)]$ diagonally. The weight of the bracket $[J]$ is $e_{J}:=\sum_{j \in J} e_{j}$. That is,

$$
\left(h_{1}, \ldots, h_{n}\right) \cdot[J]=\prod_{j \in J} h_{j}[J] .
$$

The weight of a monomial $\prod_{i}\left[J_{i}\right]^{m_{i}}$ is $\sum_{i} m_{i} e_{J_{i}}$.

Definition

The Chow polytope of $X, \operatorname{Chow}(X) \subseteq\left(\mathbb{R}^{n}\right)^{\vee}$, is the weight polytope of its Chow form R_{X} :
$\operatorname{Chow}(X)=\operatorname{conv}\left\{\right.$ weight of $m: m$ a monomial of $\left.R_{X}\right\}$.

Chow polytopes

Definition

The Chow polytope of $X, \operatorname{Chow}(X) \subseteq\left(\mathbb{R}^{n}\right)^{\vee}$, is the weight polytope of its Chow form R_{X} :

$$
\operatorname{Chow}(X)=\operatorname{conv}\left\{\text { weight of } m: m \text { a monomial of } R_{X}\right\} .
$$

Examples

- For X a hypersurface $V(f), R_{X}=f$ and $\operatorname{Chow}(X)$ is the Newton polytope.

$$
\begin{aligned}
& \text { For } X \text { a linear space, } R_{X}=\sum_{J} p_{J}[J] \text { is the linear form in the } \\
& \text { brackets with the Plücker coordinates of } X \text { as coefficients, and } \\
& \text { Chow }(X) \text { is the matroid polytope of } X \text {. } \\
& \text { For } X \text { an embedded toric variety in } \mathbb{P}^{n-1}, \text { Chow }(X) \text { is a secondary } \\
& \text { polytope [Gelfand-Kapranov-Zelevinsky]. }
\end{aligned}
$$

Chow polytopes

Definition

The Chow polytope of $X, \operatorname{Chow}(X) \subseteq\left(\mathbb{R}^{n}\right)^{\vee}$, is the weight polytope of its Chow form R_{X} :

$$
\text { Chow }(X)=\operatorname{conv}\left\{\text { weight of } m: m \text { a monomial of } R_{X}\right\} .
$$

Examples

- For X a hypersurface $V(f), R_{X}=f$ and $\operatorname{Chow}(X)$ is the Newton polytope.
- For X a linear space, $R_{X}=\sum_{J} p_{J}[J]$ is the linear form in the brackets with the Plücker coordinates of X as coefficients, and Chow (X) is the matroid polytope of X.

Orolytope [Gelfand-Kapranov-Zelevinsky].

Chow polytopes

Definition

The Chow polytope of X, $\operatorname{Chow}(X) \subseteq\left(\mathbb{R}^{n}\right)^{\vee}$, is the weight polytope of its Chow form R_{X} :

$$
\text { Chow }(X)=\operatorname{conv}\left\{\text { weight of } m: m \text { a monomial of } R_{X}\right\} .
$$

Examples

- For X a hypersurface $V(f), R_{X}=f$ and $\operatorname{Chow}(X)$ is the Newton polytope.
- For X a linear space, $R_{X}=\sum_{J} p_{J}[J]$ is the linear form in the brackets with the Plücker coordinates of X as coefficients, and Chow (X) is the matroid polytope of X.
- For X an embedded toric variety in $\mathbb{P}^{n-1}, \operatorname{Chow}(X)$ is a secondary polytope [Gelfand-Kapranov-Zelevinsky].

Faces of Chow polytopes

The torus action on $G(d, n, r)$ lets us take toric limits: given a one-parameter subgroup $u: \mathbb{K}^{*} \rightarrow\left(\mathbb{K}^{*}\right)^{n}$, send $x \in G(d, n, r)$ to $\lim _{t \rightarrow \infty} u(t) \cdot x$.
These correspond to toric degenerations of cycles in \mathbb{P}^{n-1}.

The face poset of Chow (X) is isomorphic to the poset of toric degenerations of X.

In particular, the vertices of Chow (X) are in bijection with toric degenerations of X that are sums of coordinate $(d-1)$-planes A cycle $\sum_{J} m_{j} L_{J}$ corresponds to the vertex $\sum_{J} m_{j} e_{j}$.

Faces of Chow polytopes

The torus action on $G(d, n, r)$ lets us take toric limits: given a one-parameter subgroup $u: \mathbb{K}^{*} \rightarrow\left(\mathbb{K}^{*}\right)^{n}$, send $x \in G(d, n, r)$ to $\lim _{t \rightarrow \infty} u(t) \cdot x$.
These correspond to toric degenerations of cycles in \mathbb{P}^{n-1}.

Theorem (Kapranov-Sturmfels-Zelevinsky)

The face poset of Chow (X) is isomorphic to the poset of toric degenerations of X.

In particular, the vertices of $\operatorname{Chow}(X)$ are in bijection with toric degenerations of X that are sums of coordinate $(d-1)$-planes $L_{J}=V\left(x_{j}=0: j \in J\right)$.
A cycle $\sum_{J} m_{J} L_{J}$ corresponds to the vertex $\sum_{J} m_{J} e_{J}$.

Over a valued field

Suppose (\mathbb{K}, ν) is a valued field, with residue field $\mathbf{k} \hookrightarrow \mathbb{K}$.
Over \mathbf{k}, the torus $\left(\mathbf{k}^{*}\right)^{n} \times \mathbf{k}^{*}$ acts on $G(d, n, r) \subseteq \mathbb{K}[G(n-d, n)]$: brackets $[J]$ have weight $\left(e_{J}, 0\right)$, and $a \in \mathbb{K}$ has weight $(0, \nu(a))$.
For a cycle $X \subseteq \mathbb{P}^{n-1}$ this gives us a weight polytope $\Pi \subseteq\left(\mathbb{R}^{n+1}\right)^{\vee}$. Its vertices are the vertices of $\operatorname{Chow}(X)$, lifted according to ν.

Definition

The Chow subdivision $\operatorname{Chow}^{\prime}(X)$ of X is the regular subdivision of $\operatorname{Chow}(X)$ induced by the lower faces of Π.

Examples: Newton and matroid polytope subdivisions.

The tropical side

Fact

Trop (X) is a subcomplex of the normal complex of $\operatorname{Chow}^{\prime}(X)$.

The tropical side

Fact

$\operatorname{Trop}(X)$ is a subcomplex of the normal complex of $\operatorname{Chow}^{\prime}(X)$.

Trop (X) determines $\operatorname{Chow}^{\prime}(X)$, by orthant-shooting.
Let σ_{J} be the cone in $\mathbb{R}^{n} / \mathbb{1}$ with generators $\left\{e_{j}: j \in J\right\}$. For a 0-dimensional tropical variety C, let $\# C$ be the sum of the multiplicities of the points of C.

Theorem (Dickenstein-Feichtner-Sturmfels, F) Let $u \in \mathbb{R}^{n}$ be s.t. face $_{u} \operatorname{Chow}^{\prime}(X)$ is a vertex. Then

$$
\operatorname{face}_{u} \operatorname{Chow}^{\prime}(X)=\sum_{J \in\binom{[n]}{n-d}} \#\left(\left[u+\sigma_{J}\right] \cdot \operatorname{Trop} X\right) e_{J}
$$

Orthant-shooting

When X is a hypersurface, this is just ray-shooting.

Example

Here $X=V\left(x y^{2}+x^{2} z+t^{2} y^{2} z+y z^{2}+t z^{3}\right) \subseteq \mathbb{P}^{2}$.

Orthant-shooting

When X is a hypersurface, this is just ray-shooting.

Example

Here $X=V\left(x y^{2}+x^{2} z+t^{2} y^{2} z+y z^{2}+t z^{3}\right) \subseteq \mathbb{P}^{2}$.

Orthant-shooting

When X is a hypersurface, this is just ray-shooting.

Example

Here $X=V\left(x y^{2}+x^{2} z+t^{2} y^{2} z+y z^{2}+t z^{3}\right) \subseteq \mathbb{P}^{2}$.

Orthant-shooting

When X is a hypersurface, this is just ray-shooting.

Example

Here $X=V\left(x y^{2}+x^{2} z+t^{2} y^{2} z+y z^{2}+t z^{3}\right) \subseteq \mathbb{P}^{2}$.

$$
(1,2,0)
$$

Orthant-shooting

When X is a hypersurface, this is just ray-shooting.

Example

Here $X=V\left(x y^{2}+x^{2} z+t^{2} y^{2} z+y z^{2}+t z^{3}\right) \subseteq \mathbb{P}^{2}$.

Orthant-shooting

When X is a hypersurface, this is just ray-shooting.

Example

Here $X=V\left(x y^{2}+x^{2} z+t^{2} y^{2} z+y z^{2}+t z^{3}\right) \subseteq \mathbb{P}^{2}$.

Orthant-shooting

When X is a hypersurface, this is just ray-shooting.

Example

Here $X=V\left(x y^{2}+x^{2} z+t^{2} y^{2} z+y z^{2}+t z^{3}\right) \subseteq \mathbb{P}^{2}$.

Orthant-shooting

When X is a hypersurface, this is just ray-shooting.

Example

 Here $X=V\left(x y^{2}+x^{2} z+t^{2} y^{2} z+y z^{2}+t z^{3}\right) \subseteq \mathbb{P}^{2}$.

Orthant-shooting

When X is a hypersurface, this is just ray-shooting.

Example

Here $X=V\left(x y^{2}+x^{2} z+t^{2} y^{2} z+y z^{2}+t z^{3}\right) \subseteq \mathbb{P}^{2}$.

Orthant-shooting

When X is a hypersurface, this is just ray-shooting.

Example

Here $X=V\left(x y^{2}+x^{2} z+t^{2} y^{2} z+y z^{2}+t z^{3}\right) \subseteq \mathbb{P}^{2}$.

Orthant-shooting

In general we shoot higher-dimensional cones:

Examples

Tropical cycles

Until now we've only considered tropicalisations. We'd like to work with abstract tropical objects:

Definition

A tropical cycle in $\mathbb{R}^{n-1}=\mathbb{R}^{n} / \mathbb{1}$ is an element of $\left\{\begin{array}{l}\text { pure integral polyhedral complexes } w / \text { integer } \\ \text { weights satisfying the balancing condition }\end{array}\right\} /\binom{$ refinement of }{ complexes } . A tropical variety is a tropical cycle with all weights nonnegative. It is a fan cycle if the underlying complex is a fan.
 Kaiserslautern notation!)

Tropical cycles

Until now we've only considered tropicalisations. We'd like to work with abstract tropical objects:

Definition

A tropical cycle in $\mathbb{R}^{n-1}=\mathbb{R}^{n} / \mathbb{1}$ is an element of $\left\{\begin{array}{l}\text { pure integral polyhedral complexes w/ integer } \\ \text { weights satisfying the balancing condition }\end{array}\right\} /\binom{$ refinement of }{ complexes } . A tropical variety is a tropical cycle with all weights nonnegative. It is a fan cycle if the underlying complex is a fan.

Let Z^{i} be the \mathbb{Z}-module of tropical cycles in \mathbb{R}^{n-1} of codimension i, and $Z^{*}=\bigoplus_{i} Z^{i}$.
For Σ a polyhedral complex, let $Z^{*}(\Sigma)$ be the finite-dimensional submodule of cycles whose facets are faces of Σ. (This is not Kaiserslautern notation!)

The intersection product on tropical cycles

For tropical cycles C and D, let $C \cdot D$ denote the (stable) intersection of tropical intersection theory: $C \cdot D=\lim _{\epsilon \rightarrow 0} C \cap(D$ displaced by ϵ) with lattice multiplicities.
Stable intersection makes Z^{*} into a graded ring.
Fan tropical cycles and their intersection product make other appearances:

- as elements of the direct limit of Chow cohomology rings of toric varieties [Fulton-Sturmfels];
- as Minkomski meights, one representation of the elements of the polytope algebra of Peter McMullen.

The intersection product on tropical cycles

For tropical cycles C and D, let $C \cdot D$ denote the (stable) intersection of tropical intersection theory: $C \cdot D=\lim _{\epsilon \rightarrow 0} C \cap(D$ displaced by ϵ) with lattice multiplicities.
Stable intersection makes Z^{*} into a graded ring.
Fan tropical cycles and their intersection product make other appearances:

- as elements of the direct limit of Chow cohomology rings of toric varieties [Fulton-Sturmfels];
- as Minkowski weights, one representation of the elements of the polytope algebra of Peter McMullen.

The intersection product on tropical cycles

For tropical cycles C and D, let $C \cdot D$ denote the (stable) intersection of tropical intersection theory: $C \cdot D=\lim _{\epsilon \rightarrow 0} C \cap(D$ displaced by ϵ) with lattice multiplicities.
Stable intersection makes Z^{*} into a graded ring.
Fan tropical cycles and their intersection product make other appearances:

- as elements of the direct limit of Chow cohomology rings of toric varieties [Fulton-Sturmfels];
- as Minkowski weights, one representation of the elements of the polytope algebra of Peter McMullen.

The stable Minkowski sum

The Minkowski sum of sets $S, T \subseteq \mathbb{R}^{n-1}$ is $\{s+t: s \in S, t \in T\}$. For $\sigma \subseteq \mathbb{R}^{n-1}$, let $N_{\sigma}=\mathbb{Z}^{n-1} \cap$ the \mathbb{R}-subspace generated by a translate of σ containing 0 . Define multiplicities

$$
\mu_{\sigma, \tau}= \begin{cases}{\left[N_{\sigma+\tau}: N_{\sigma}+N_{\tau}\right]} & \text { if } \operatorname{dim}(\sigma+\tau)=\operatorname{dim} \sigma+\operatorname{dim} \tau \\ 0 & \text { otherwise. }\end{cases}
$$

This is the same as for tropical intersection, except for the condition.

Definition

The stable Minkowski sum $C \boxplus D$ of tropical cycles C and D is their Minkowski sum with the right multiplicities: for every facet σ of C with mult m_{σ} and τ of D with mult $m_{\tau}, C \boxplus D$ has a facet $\sigma+\tau$ with mult $\mu_{\sigma, \tau} m_{\sigma} m_{\tau}$.

Proposition

The stable Minkowski sum of tropical cycles is a tropical cycle.

Orthant-shooting revisited

Definition

Let the tropical Chow hypersurface of $X \subseteq \mathbb{P}^{n-1}$ be the codimension 1 part of the normal complex to $\operatorname{Chow}^{\prime}(X)$.

Let \mathcal{L} be the canonical tropical hyperplane Trop $V\left(x_{1}+\ldots+x_{n}\right)$, and $\mathcal{L}_{(i)}$ its dimension i skeleton. For a tropical cycle X let $X^{\text {refl }}$ be the reflection of X through the origin.

Main theorem 1 (F)
Let X be a codimension k cycle in \mathbb{P}^{n-1}. The tropical Chow hypersurface of X is $\operatorname{Trop}(X) \boxplus\left(\mathcal{L}_{(k-1)}\right)^{\text {refl }}$.

Orthant-shooting revisited

Definition

Let the tropical Chow hypersurface of $X \subseteq \mathbb{P}^{n-1}$ be the codimension 1 part of the normal complex to $\operatorname{Chow}^{\prime}(X)$.

Let \mathcal{L} be the canonical tropical hyperplane $\operatorname{Trop} V\left(x_{1}+\ldots+x_{n}\right)$, and $\mathcal{L}_{(i)}$ its dimension i skeleton. For a tropical cycle X let $X^{\text {refl }}$ be the reflection of X through the origin.

Main theorem 1 (F)

Let X be a codimension k cycle in \mathbb{P}^{n-1}. The tropical Chow hypersurface of X is $\operatorname{Trop}(X) \boxplus\left(\mathcal{L}_{(k-1)}\right)^{\text {refl }}$.

Definition

Define ch: $Z^{k} \rightarrow Z^{1}$ by $\operatorname{ch}(C)=C \boxplus\left(\mathcal{L}_{(k-1)}\right)^{\text {refl }}$ for a tropical cycle C.

Computing a Chow hypersurface

Example

In our running example:

Computing a Chow hypersurface

Example

In our running example:

Aside: \boxplus compared with intersection

In the exact sequence

$$
0 \rightarrow \mathbb{R}^{n-1} \xrightarrow{\iota} \mathbb{R}^{n-1} \times \mathbb{R}^{n-1} \xrightarrow{\phi} \mathbb{R}^{n-1} \rightarrow 0
$$

where ι is the inclusion along the diagonal and ϕ is subtraction,

$$
\begin{aligned}
C \cdot D & =\iota^{*}(C \times D) \\
C \boxplus D^{\mathrm{refl}} & =\phi_{*}(C \times D) .
\end{aligned}
$$

If C and D have complimentary dimensions,

$$
\#(C \cdot D)=\operatorname{mult}\left(C \boxplus D^{\mathrm{refl}}\right)
$$

Degree

Definition

The degree of a tropical cycle C of codimension k is $\operatorname{deg} C:=\#\left(C \cdot \mathcal{L}_{(k)}\right)$.

Proposition

The degree of $\operatorname{ch}(C)$ is $\operatorname{codim} C \operatorname{deg} C$.

Definition

A tropical linear space is a tropical variety of degree 1.

Tropical linear spaces

Definition

A tropical linear space is a tropical variety of degree 1.
Others (e.g. Speyer) have taken tropical linear spaces in $\mathbb{T} \mathbb{P}^{n-1}$ to be given by regular matroid subdivisions, described by Plücker vectors $\left(p_{J}: J \in\binom{[n]}{n-d}\right.$).

Main theorem 2 (Mikhalkin-Sturmfels-Ziegler; F)

Every tropical linear space arises from a matroid subdivision. (That is, these definitions are equivalent.)

Matroid subdivision \Rightarrow linear space is known:

$$
\left(p_{J}\right) \mapsto \bigcap_{|J|=n-\alpha+1} \operatorname{Trop} V\left(\oplus_{j \in K} a_{K \backslash j} \odot x_{j}\right)
$$

This is the intersection of several hyperplanes, hence degree 1.

Sketch of proof: linear space \Rightarrow matroid subdivision

Let C be a tropical linear space. We will construct the polytope subdivision Σ normal to $\operatorname{ch}(C)$.
(Thus if $C=\operatorname{Trop}(X)$, we will construct $\operatorname{Chow}^{\prime}(X)$. Good.)
Using relationships between \boxplus and \cdot, show that Σ has $\{0,1\}$-vector vertices and edge directions $e_{i}-e_{j}$. Thus Σ is a matroid polytope subdivision [Gelfand-Goresky-MacPherson-Serganova].
Why is Σ the right subdivision? We should be able to recover C from Σ by taking the normals to the loop-free faces [Ardila-Klivans].
Assume C has no lineality. Then:
normal to a loop-free face in $\Sigma \Leftrightarrow$ contains no ray in a direction $-e_{i}$;
C contains no rays in directions $-e_{i}$;
every ray of $\left(\mathcal{L}_{(k)}\right)^{\text {refl }}$ is in a direction $-\boldsymbol{e}_{i}$.

The kernel of $c h$

ch : $Z^{k} \rightarrow Z^{1}, C \mapsto C \boxplus\left(\mathcal{L}_{(k)}\right)^{\text {refl }}$ is a linear map.
In each module Z^{k} of tropical cycles lies a pointed cone of varieties
$Z_{\text {eff }}^{k}$, and we have $\operatorname{ch}\left(Z_{\text {eff }}^{k}\right) \subseteq Z_{\text {eff }}^{1}$.

Fact

ch is not injective. Thus, Chow polytope subdivisions do not determine tropical varieties, in general.

Describe the kernel of $c h$, and the fibers of its restriction to varieties.
Perhaps easier with fixed complexes, ch: $Z^{k}(\Sigma) \rightarrow Z^{1}\left(\Sigma^{\prime}\right)$.
ch is injective for curves.

The kernel of $c h$

ch: $Z^{k} \rightarrow Z^{1}, C \mapsto C \boxplus\left(\mathcal{L}_{(k)}\right)^{\text {refl }}$ is a linear map.
In each module Z^{k} of tropical cycles lies a pointed cone of varieties
$Z_{\text {eff }}^{k}$, and we have $\operatorname{ch}\left(Z_{\text {eff }}^{k}\right) \subseteq Z_{\text {eff }}^{1}$.

Fact

ch is not injective. Thus, Chow polytope subdivisions do not determine tropical varieties, in general.

Question 3

Describe the kernel of $c h$, and the fibers of its restriction to varieties.
Perhaps easier with fixed complexes, ch: $Z^{k}(\Sigma) \rightarrow Z^{1}\left(\Sigma^{\prime}\right)$.
ch is injective for curves.

The kernel of $c h$

ch : $Z^{k} \rightarrow Z^{1}, C \mapsto C \boxplus\left(\mathcal{L}_{(k)}\right)^{\text {refl }}$ is a linear map.
In each module Z^{k} of tropical cycles lies a pointed cone of varieties $Z_{\text {eff }}^{k}$, and we have $\operatorname{ch}\left(Z_{\text {eff }}^{k}\right) \subseteq Z_{\text {eff }}^{1}$.

Fact

ch is not injective. Thus, Chow polytope subdivisions do not determine tropical varieties, in general.

Question 3

Describe the kernel of ch, and the fibers of its restriction to varieties.
Perhaps easier with fixed complexes, ch: $Z^{k}(\Sigma) \rightarrow Z^{1}\left(\Sigma^{\prime}\right)$.

Conjecture

ch is injective for curves.

Some elements of ker ch: what's the fan?

Let $\mathcal{F}_{n} \subseteq \mathbb{R}^{n-1}$ be the normal fan of the permutohedron,
i.e. the fan of the type A reflection arrangement, the braid arrangement, i.e. the common refinement of all normal fans of matroid polytopes.

The ray generators of \mathcal{F}_{n} are $e_{J}=\sum_{j \in J} e_{j}$ for all $J \subsetneq[n], J \neq \emptyset$. Its cones are generated by chains $\left\{e_{J_{1}}, \ldots, e_{J_{k}}: J_{1} \subseteq \cdots \subseteq J_{k}\right\}$.
\square flag variety.
$\operatorname{dim} Z^{*}\left(\mathcal{F}_{n}\right)=n!$, and $\operatorname{dim} Z^{k}\left(\mathcal{F}_{n}\right)$
is the Eulerian number $E(n, k)$, i.e. the number of permutations of [n] with k descents.

Some elements of ker ch: what's the fan?

Let $\mathcal{F}_{n} \subseteq \mathbb{R}^{n-1}$ be the normal fan of the permutohedron,
i.e. the fan of the type A reflection arrangement, the braid arrangement, i.e. the common refinement of all normal fans of matroid polytopes.

The ray generators of \mathcal{F}_{n} are $e_{J}=\sum_{j \in J} e_{j}$ for all $J \subsetneq[n], J \neq \emptyset$. Its cones are generated by chains $\left\{e_{J_{1}}, \ldots, e_{J_{k}}: J_{1} \subseteq \cdots \subseteq J_{k}\right\}$.
The ring $Z^{*}\left(\mathcal{F}_{n}\right)$ is the cohomology ring of a generic torus orbit in the flag variety.
$\operatorname{dim} Z^{*}\left(\mathcal{F}_{n}\right)=n!$, and $\operatorname{dim} Z^{k}\left(\mathcal{F}_{n}\right)$ is the Eulerian number $E(n, k)$, i.e. the number of permutations of [n] with k descents.

$n \backslash k$	0	1	2	3	4	5
1	1					
2	1	1				
3	1	4	1			
4	1	11	11	1		
5	1	26	66	26	1	
6	1	57	302	302	57	1

Tropical varieties with the same Chow polytope

For any cone $\sigma=\mathbb{R}_{\geq 0}\left\{\boldsymbol{e}_{J_{1}}, \ldots, e_{J_{k}}\right\}$ of \mathcal{F}_{n} and
$\sigma_{J^{\prime}}{ }^{\text {refl }}=\mathbb{R}_{\geq 0}\left\{-e_{j}: j \in J^{\prime}\right\}$, the sum $\sigma \boxplus \sigma_{J^{\prime}}$ refl is again a union of cones of \mathcal{F}_{n}.
So $\operatorname{ch}\left(Z^{k}\left(\mathcal{F}_{n}\right)\right) \subseteq Z^{1}\left(\mathcal{F}_{n}\right)$. But $\operatorname{dim} Z^{k}\left(\mathcal{F}_{n}\right)>\operatorname{dim} Z^{1}\left(\mathcal{F}_{n}\right)$ for $1<k<n-2$.

For $(n, k)=(5,2), 66>26$ and the kernel is 40-dimensional.
Two tropical varieties in \mathbb{R}^{4} of dim 2 with equal Chow polytope are

Tropical varieties with the same Chow polytope

For any cone $\sigma=\mathbb{R}_{\geq 0}\left\{\boldsymbol{e}_{\mathcal{J}_{1}}, \ldots, \boldsymbol{e}_{J_{k}}\right\}$ of \mathcal{F}_{n} and
$\sigma_{J^{\prime}}{ }^{\text {refl }}=\mathbb{R}_{\geq 0}\left\{-e_{j}: j \in J^{\prime}\right\}$, the sum $\sigma \boxplus \sigma_{J^{\prime}}$ refl is again a union of cones of \mathcal{F}_{n}.

So $c h\left(Z^{k}\left(\mathcal{F}_{n}\right)\right) \subseteq Z^{1}\left(\mathcal{F}_{n}\right)$. But $\operatorname{dim} Z^{k}\left(\mathcal{F}_{n}\right)>\operatorname{dim} Z^{1}\left(\mathcal{F}_{n}\right)$ for $1<k<n-2$.

Example

For $(n, k)=(5,2), 66>26$ and the kernel is 40-dimensional.
Two tropical varieties in \mathbb{R}^{4} of dim 2 with equal Chow polytope are

Take-home message

Tropical varieties are "dual" to their Chow subdivisions.
Trop var \rightsquigarrow Chow subdiv has a nice combinatorial rule, in terms of stable Minkowski sum of tropical cycles.
Chow subdiv \rightsquigarrow trop var fails interestingly to be well-defined.

Take-home message

Tropical varieties are "dual" to their Chow subdivisions.
Trop var \rightsquigarrow Chow subdiv has a nice combinatorial rule, in terms of stable Minkowski sum of tropical cycles.
Chow subdiv \rightsquigarrow trop var fails interestingly to be well-defined.

Thank you!

