BOIJ-SÖDERBERG EXPANSIONS OF MATROID STANLEY-REISNER RINGS

ALEX FINK

This note records a proof of Proposition 0.1 below, on a decomposition of matroid Stanley-Reisner rings into pure Boij-Söderberg tables. We take the fundamental pure tables to be the vectors $\pi_{\mathbf{d}} \in \mathbb{Q}^{\mathbb{Z}^{2}}$ indexed by sequences of positive integers $\mathbf{d}=\left(d_{0}, \ldots, d_{c}\right)$, such that the only nonzero components of $\pi_{\mathbf{d}}$ are

$$
\left(\pi_{\mathbf{d}}\right)_{i d_{i}}=\frac{(-1)^{i}}{\prod_{j \neq i}\left(d_{j}-d_{i}\right)}
$$

We will always have $d_{0}=0$. We also write $\left\{e_{i j}\right\}$ for the standard basis for the space $\mathbb{Q}^{\mathbb{Z}^{2}}$ of Betti tables.

Let $S=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$. If Δ is a simplicial complex on $[n]=\{1, \ldots, n\}$, then $I_{\Delta} \subseteq S$ will denote its Stanley-Reisner ideal. Matroids on the ground set $[n]$ are interpreted as certain simplicial complexes on the vertices $[n]$, whose faces are the independent sets: thus the rank of M is its dimension plus one. We use matroidal notation for operations on these complexes: for instance we denote restriction of the complex Δ to a set A by $\Delta \mid A$.

For concision, let $\mathcal{C}(M)$ be the set of maximal chains of flats of a matroid M. If the ground set of M is $[n]$, this is the set of tuples $\mathbf{F}=\left(F_{0}, \ldots, F_{\mathrm{rk} M}\right)$ in which

$$
\emptyset=F_{0} \subsetneq \cdots \subsetneq F_{\text {rk } M}=[n]
$$

are all flats.
Proposition 0.1. If M is a matroid on [n] of rank r with no coloops, then the Betti table of the Stanley-Reisner ring S / I_{M} is given by

$$
\begin{equation*}
\beta\left(S / I_{M}\right)=\sum_{\mathbf{F} \in \mathcal{C}(M)}\left(\prod_{i=1}^{n-r}\left|F_{i}\right|-\left|F_{i-1}\right|\right) \cdot \pi_{n-\left|F_{n-r}\right|, \ldots, n-\left|F_{0}\right|} \tag{0.1}
\end{equation*}
$$

Proof. We will use Hochster's formula [1, Corollary 5.12], in the following form:

$$
\beta_{i j}\left(S / I_{M}\right)=\sum_{\substack{A \subseteq[n] \\|A|=j}} \operatorname{dim} \widetilde{H}^{j-i-1}(M \mid A, \mathbf{k})
$$

These restrictions $M \mid A$ of the matroid M are themselves matroids and are therefore Cohen-Macaulay, and so $\operatorname{dim} \widetilde{H}^{j-i-1}(M \mid A, \mathbf{k})$ is only nonzero if $j-i-1$ is equal to the dimension of $M \mid A$, i.e. if $j-i=\operatorname{rk}_{M}(A)$. The dimension of the top-dimensional homology of $M \mid A$ is the Tutte evaluation $T_{M \mid A}(0,1)$. So the above sum may be recast

$$
\beta\left(S / I_{M}\right)=\sum_{A \subseteq[n]} T_{M \mid A}(0,1) e_{|A|-\mathrm{rk}_{M}(A),|A|}
$$

Changing to the dual matroid, and writing $F=[n] \backslash A$, this is

$$
\begin{equation*}
\beta\left(S / I_{M}\right)=\sum_{F \subseteq[n]} T_{M * / F}(1,0) e_{n-r-\mathrm{rk}_{M^{*}}(F), n-|F|} \tag{0.2}
\end{equation*}
$$

Let us now turn to the right side of (0.1). Expanding the definition of the $\pi_{\mathbf{d}}$, this is

$$
\sum_{\mathbf{F}} \sum_{i=0}^{n-r} e_{n-r-i, n-\left|F_{i}\right|}(-1)^{n-r-1} \frac{\prod_{j=1}^{n-r}\left|F_{j}\right|-\left|F_{j-1}\right|}{\prod_{j \neq i}\left|F_{j}\right|-\left|F_{i}\right|}
$$

We recast this as a sum over the various flats $F:=F_{i}$ of M^{*} that occur in the chains \mathbf{F}, breaking up the remaining summation into the subchain of \mathbf{F} before the i th position and the subchain after. Note that $i=\mathrm{rk}_{M^{*}}(F)$. What results is

$$
\sum_{F \text { a flat }} e_{n-r-\mathrm{rk}_{M^{*}}(F), n-|F|}\left(\sum_{\mathbf{G} \in \mathcal{C}\left(M^{*} \mid F\right)} \prod_{j=1}^{\mathrm{rk}} \prod^{M^{*} \mid F} \frac{\left|G_{j}\right|-\left|G_{j-1}\right|}{|F|-\left|G_{j-1}\right|}\right)\left(\sum_{\mathbf{H} \in \mathcal{C}\left(M^{*} / F\right)} \prod_{j=1}^{\mathrm{rk} M^{*} / F} \frac{\left|H_{j}\right|-\left|H_{j-1}\right|}{\left|H_{j}\right|}\right)
$$

We now compare this sum to (0.2). First of all, the terms of (0.2) for which F is not a flat of M^{*} make no contribution, as then M^{*} / F contains a loop, making $T_{M * / F}(1,0)$ equal to 0 . We are thus done in view of the equations in Lemma 0.2 for the two parenthesized factors. $\left(M^{*} \mid F\right.$ is loopfree because M^{*} is; M^{*} / F is because F is a flat.)

Lemma 0.2. Let M be a matroid on ground set $[n]$ with no loops. Then
(a) $\sum_{\mathbf{F} \in \mathcal{C}(M)} \prod_{j=1}^{\mathrm{rk} M} \frac{\left|F_{j}\right|-\left|F_{j-1}\right|}{n-\left|F_{j-1}\right|}=1$.
(b) $\sum_{\mathbf{F} \in \mathcal{C}(M)} \prod_{j=1}^{\mathrm{rk} M} \frac{\left|F_{j}\right|-\left|F_{j-1}\right|}{\left|F_{j}\right|}=T_{M}(1,0)$.

Proof. In both cases the proof will be inductive on the rank of M, by taking subchains of length one less and passing to an appropriate minor of M. The rank 0 base cases are trivial.

For (a), we extract the $j=1$ term of the product, giving

$$
\begin{aligned}
& \sum_{F \text { a rank } 1 \text { flat }}\left(\frac{|F|}{n} \sum_{\mathbf{G} \in \mathcal{C}(M / F)} \prod_{i=1}^{\mathrm{rk} M-1} \frac{\left|G_{i}\right|-\left|G_{i-1}\right|}{(n-|F|)-\left|G_{i-1}\right|}\right) \\
= & \sum_{F \text { a rank } 1 \text { flat }} \frac{|F|}{n} \cdot 1
\end{aligned}
$$

by induction. Since the rank 1 flats partition $[n]$, the sum above equals 1 as desired.
For (b), we begin by noting that $T_{M}(1,0)$ is the Möbius function evaluation $(-1)^{\mathrm{rk} M} \mu(\emptyset,[n])$ in the lattice of flats of M. (This follows from the Crosscut Theorem [2, Corollary 3.9.4], since by the corank-nullity expansion of Tutte, $T_{M}(1,0)$ counts spanning sets of M with alternating sign.)

Using the induction, we extract the $j=\operatorname{rk} M$ term of the product and have

$$
\begin{aligned}
& \sum_{F \text { a hyperplane }}\left(\frac{n-|F|}{n} \sum_{\mathbf{G} \in \mathcal{C}(M \mid F)} \prod_{j=1}^{\mathrm{rk} M-1} \frac{\left|G_{j}\right|-\left|G_{j-1}\right|}{\left|G_{j}\right|}\right) \\
= & \sum_{F \text { a hyperplane }} \frac{n-|F|}{n} \cdot(-1)^{\mathrm{rk} \mathrm{M-1} \mu(\emptyset, F)} \\
= & \frac{1}{n} \sum_{a \in[n] F \not \supset a \text { a hyperplane }}(-1)^{\mathrm{rk} M-1} \mu(\emptyset, F) \\
= & \frac{1}{n} \sum_{a \in[n]}(-1)^{\mathrm{rk} M} \mu(\emptyset,[n]) \\
= & (-1)^{\mathrm{rk} M} \mu(\emptyset,[n])
\end{aligned}
$$

where the second-last equality is Weisner's theorem [2, Corollary 3.9.3].
[[Eliminate the no-coloops restriction. Is this better framed in terms of the cover ideal, and does it then go through for non-matroids? Are there connections between the product on Boij-Söderberg tables and my Hopf structures with Derksen?]]

References

[1] Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra.
[2] Richard Stanley, Enumerative combinatorics vol. 1, 2nd ed.

