
11 Discrete Random variables

In this section we define the expectation and variance of a discrete random
variable and deduce some basic properties.

Proposition 11.1. Let X be a discrete random variable on a sample space
S. Then ∑

r∈Range(X)

P(X = r) = 1

Proof The fact that the range ofX is either finite or countably infinite means
that we can use Kolmogorov’s second and third axioms to deduce that∑

r∈Range(X)

P(X = r) = P (S) = 1

•

This proposition is a useful to check we have calculated the probability
mass function of X correctly.

Definition The expectation of a discrete random variable X is

E(X) =
∑

r∈Range(X)

r P(X = r)

Thus the expectation of X is a ‘weighted average’ of the values taken by X,
where each value r ∈ Range(X) is weighted by the probability it occurs.

Sometimes it is useful to consider functions of random variables. If X is
a random variable on S and g : R → R then Y = g(X) is a new random
variable on X which maps S into R by Y (s) = g(X(s)) for all outcomes
s ∈ S. For example Y = 2X − 7 or Z = X2 are both new random variables
on S.

Proposition 11.2 (Properties of expectation). Let X be a discrete random
variable.

(a) Suppose b, c ∈ R. Then E(bX + c) = bE(X) + c.

(b) If m,M ∈ R and m ≤ X(s) ≤ M for all s ∈ S then

m ≤ E(X) ≤ M.
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(c) If there exists k ∈ R with P(X = k − t) = P(X = k + t) for all t ∈ R
then E(X) = k.

Proof (a) We have

E(bX + c) =
∑

r∈Range(X)

(br + c)P(X = r)

=
∑

r∈Range(X)

brP(X = r) +
∑

r∈Range(X)

cP(X = r)

= b
∑

r∈Range(X)

rP(X = r) + c
∑

r∈Range(X)

P(X = r)

= bE(X) + c

where the fourth equality uses the definition of E(X) for the first term and
Proposition 11.1 for the second term.

(b) See Exercises 7, Q3.

(c) We have

E(X) =
∑

r∈Range(X)

rP(X = r)

= kP(X = k) +
∑
t>0

k−t∈Range(X)

[(k − t)P(X = k − t) + (k + t)P(X = k + t)]

= kP(X = k) +
∑
t>0

k−t∈Range(X)

[kP(X = k − t) + kP(X = k + t)]

= k
∑

r∈Range(X)

P(X = r)

= k

where:

• the second and fourth equalities follow by putting r = k− t when r < k
and r = k + t when r > k;

• the third equality holds because P(X = k − t) = P(X = k + t) so the
terms involving t cancel;

• the fifth equality uses Proposition 11.1.
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•

Definition Let X be a discrete random variable with E(X) = µ. Then the
variance of X is

Var(X) =
∑

r∈Range(X)

[r − µ]2 P(X = r).

Thus Var(X) is the expected value of [X − µ]2 i.e. the square of the dis-
tance from X to E(X). It measures how the probability distribution of X
is concentrated about its expectation. A small variance means X is sharply
concentrated and a large variance means X is spread out.

Proposition 11.3 (Properties of variance). Let X be a discrete random
variable. Then

(a) Var(X) ≥ 0.

(b) If b, c ∈ R then Var(bX + c) = b2Var(X).

Proof (a) Let E(X) = µ. Then

Var(X) =
∑

r∈Range(X)

[r − µ]2 P(X = r) ≥ 0

since [r − µ]2 ≥ 0 and P(X = r) ≥ 0 for all r ∈ RangeX.

(b)We have E(bX + c) = bµ+ c by Proposition 11.2. Thus

Var(bX + c) =
∑

r∈Range(X)

[(br + c)− (bµ+ c)]2 P(X = r)

= b2
∑

r∈Range(X)

[r − µ]2 P(X = r)

= b2Var(X)

•

We close this section by deriving a useful formula for calculating variance.

Proposition 11.4. Suppose X is a discrete random variable. Then Var(X) =
E(X2)− E(X)2.
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Proof Let E(X) = µ. Then

Var(X) =
∑

r∈Range(X)

[r − µ]2 P(X = r)

=
∑

r∈Range(X)

[r2 − 2rµ+ µ2]P(X = r)

=
∑

r∈Range(X)

r2 P(X = r)− 2µ
∑

r∈Range(X)

r P(X = r) + µ2
∑

r∈Range(X)

P(X = r)

We have:

•
∑

r2 P(X = r) = E(X2);

•
∑

r P(X = r) = E(X);

•
∑

P(X = r) = 1, by Proposition 11.1.

Hence
Var(X) = E(X2)− 2µE(X) + µ2 = E(X2)− E(X)2

since E(X) = µ. •

12 Some Common Discrete Probability Dis-

tributions

Definition Given two discrete random variables X and Y we say that they
have the same probability distribution if they have the same range and the
same probability mass function i.e. P(X = r) = P(Y = r) for all values r
in the range. We use the notation X ∼ Y to mean X and Y have the same
probability distribution.

Certain probability distributions occur so often that it is convenient to
give them special names. In this section we study a few of these. In each case
we will determine the probability mass function, expectation and variance,
as well as describing the sort of situation in which the distribution occurs.
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12.1 Bernoulli distribution

Suppose that a trial (experiment) with two outcomes is performed. Such a
trial is called a Bernoulli trial and the outcomes are usually called success
and failure with P(success) = p, and hence P(failure) = 1 − p. We define a
random variable X by putting X(success) = 1 and X(fail) = 0. Then the
probability mass function of X is

n 0 1
P (X = n) 1− p p

We say that X has the Bernoulli distribution and write X ∼ Bernoulli(p).

Lemma 12.1. If X ∼ Bernoulli(p) then

(a) E(X) = p.

(b) Var(X) = p(1− p)

Proof (a) Using the definition of E(X) we have

E(X) = 0× (1− p) + 1× p = p

(b) Using Proposition 11.4 we have

Var(X) = E(X2)− E(X)2 = [02 × (1− p) + 12 × p]− p2 = p(1− p)

•

12.2 Binomial distribution

Suppose we perform n independent Bernoulli trials. Let X be the number
of trials which result in success. Then X has the binomial distribution. We
write X ∼ Bin(n, p). The range of X is {0, 1, 2, . . . , n} and X has probability
mass function

P(X = k) =

(
n

k

)
pk(1− p)n−k for 0 ≤ k ≤ n.

Lemma 12.2. If X ∼ Bin(n, p) then
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(a) E(X) = np.

(b) Var(X) = np(1− p)

Proof (a) Using the definition of E(X) we have

E(X) =
∑

k∈Range(X)

k P(X = k)

=
n∑

k=0

k

(
n

k

)
pk(1− p)n−k

=
n∑

k=1

k
n!

k! (n− k)!
pk(1− p)n−k

= np
n∑

k=1

(n− 1)!

(k − 1)! (n− k)!
pk−1(1− p)n−k

where the third equality uses the fact that the k = 0 term in the summation
is zero. We can now put m = n − 1 and i = k − 1 in the last equality to
obtain

E(X) = np
m∑
i=0

m!

i! (m− i)!
pi(1− p)m−i

= np

m∑
i=0

(
m

i

)
pi(1− p)m−i

= np[p+ (1− p)]m

= np

where the third equality uses the Binomial Theorem.

(b) See Exercises 8. •

12.3 Hypergeometric distribution

Suppose that we have B objects, R of which are red and the remaining B−R
of which are white. We make a selection of n objects without replacement.
Let X be the number of red objects among the n objects chosen. We say
that X has the hypergeometric distribution and write X ∼ Hg(n,R,B). The
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random variable X takes values in {0, 1, 2, . . . , n} and has probability mass
function

P(X = k) =

(
R
k

)(
B−R
n−k

)(
B
n

) for 0 ≤ k ≤ n.

This follows from our results on sampling. There are
(
R
k

)
ways of choosing

the k red objects; for each of these there are
(
B−R
n−k

)
ways of choosing the n−k

white objects; and the sample space has size
(
B
n

)
.

It can be shown that:

Lemma 12.3. If X ∼ Hg(n,R,B) then

(a) E(X) = n
(
R
B

)
.

(b) Var(X) = n
(
R
B

) (
1− R

B

) (
B−n
B−1

)
It is perhaps interesting to compare this with the analogous random vari-

able Y we obtain when the sampling is done with replacement. We have
Y ∼ Bin(n, R

B
). The expectation of Y is the same as that of X but the

variance differs by a factor of
(
B−n
B−1

)
; this is close to 1 when B is very large

compared to n.

12.4 Geometric distribution

Suppose we perform an unlimited number of Bernoulli trials and let X be
the number of trials up to and including the first success. In this case X has
the geometric distribution. We write X ∼ Geom(p). The random variable X
has range {1, 2, 3, . . . } and has probability mass function

P(X = k) = p(1− p)k−1 for k ≥ 1.

Lemma 12.4. If X ∼ Geom(p) then

(a) E(X) = 1
p
.

(b) Var(X) = 1−p
p2

Proof (a) We have

E(X) =
∞∑
k=1

kp(1− p)k−1 =
∞∑
r=0

(r + 1) p(1− p)r (1)
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where the second equality follows by putting r = k − 1. We also have

(p− 1)E(X) =
∞∑
k=1

kp(1− p)k =
∞∑
r=0

rp(1− p)r (2)

where the second equality follows by putting r = k and using the fact that
the r = 0 term in the last summation is zero. Subtracting (2) from (1) gives

[1− (p− 1)]E(X) =
∞∑
r=0

p(1− p)r = p
∞∑
r=0

(1− p)r (3)

Now [1− (p− 1)]E(X) = pE(X) and
∑∞

r=0(1− p)r = 1
1−(1−p)

= 1
p
by the for-

mula for the sum of a geometric progression. Hence we have pE(X) = p1
p
= 1,

so E(X) = 1/p.

(b) See Exercises 8. •

12.5 Poisson distribution

Suppose that incidents of some kind occur at random times but at an average
rate λ incidents per unit time. Let X be the number of these incidents which
occur in a fixed unit time interval. (For example we could take X to be the
number of emissions from a radioactive source in one particular second, or
the number of phone calls received on a particular day.) In this case X has a
Poisson distribution. We write X ∼ Poisson(λ). The random variable X has
range {0, 1, 2, . . . }. It can be show that the probability mass function for X
is

P(Y = k) = e−λλ
k

k!
for k ≥ 0.

(See Remark at the end of this subsection for some justification of this.)

Lemma 12.5. If X ∼ Poisson(λ) then

(a) E(X) = λ.

(b) Var(X) = λ
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Proof (a) Using the definition of E(X) we have

E(X) =
∑

k∈Range(X)

k P(X = k)

=
∞∑
k=0

k e−λλ
k

k!

= e−λ

∞∑
k=1

k
λk

k!

= λe−λ

∞∑
k=1

λk−1

(k − 1)!

= λe−λ

∞∑
i=0

λi

i!

= λ

where:

• the third equality uses the fact that the k = 0 term in the summation
is zero;

• the fifth equality uses the substitution i = k − 1;

• the last equality uses the Tayler expansion eλ =
∑∞

i=0
λi

i!
for any λ ∈ R.

(b) See Exercises 8. •

Remark The probability mass function for the Poisson distribution looks
rather mysterious. It comes from considering a limit of probabilities coming
from binomial distributions. Specifically, suppose that we divide the unit
time interval we are interested in into n equal subintervals. If n is very large
then the subintervals are very small so it is unlikely that there will be two
or more incidents in any one of the subintervals. So lets assume that there
is never more than 1 incident in a subinterval and that the probability that
there is 1 incident is equal to λ/n. Let Y be the total number of incidents in
the unit time interval when we make this assumption. Then Y ∼ Bin(n, λ/n),
so

P (Y = k) =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

.
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Of course the probability mass function of Y is not the same as that of X
(since the Poisson distribution allows there to be 2 or more incidents in a
subinterval). However if n is made larger and larger then the subintervals
become smaller and smaller and the probability mass function of Y gives a
better and better approximation to that of X. If we take the limit of the
expression for P (Y = k) as n → ∞ then we get e−λ λk

k!
. This is the proba-

bility mass function of X. (We need techniques from Analysis to make this
argument precise. These will be covered in the level 5 module Convergence
and Continuity.)

12.6 Summary

The three most important discrete distribution are the binomial, geometric
and Poisson distributions. Condense this section of the notes into half a page
by writing your own summary of their properties (probability mass function,
expectation, variance and when they occur). You could include the Bernoulli
and Hypergeometric distributions also if you like.
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