10 Introduction to Random Variables

Suppose we have a sample space S. Sometimes we are interested not in the exact outcome but only some consequence of it (for example I toss 3 coins but I only care about how many heads occur not the exact outcome). In this sort of situation random variables are useful.

Definition A random variable is a function from S to \mathbb{R} .

Notation We usually use capital letters for random variables e.g. X, Y, Z, even though they are functions.

Remark An (informal) way of thinking is to regard a random variable as a question about the outcome which has an answer which is a real number (e.g. how many heads occur in a coin tossing experiment) or a measurement made on the outcome.

Given a random variable X on S, statements like "X = 3" or " $X \le 3$ " are events. Specifically "X = 3" is the event $\{s \in S : X(s) = 3\}$ i.e. the set of all outcomes in S for which which X takes the value 3. Similarly " $X \le 3$ " is the event $\{s \in S : X(s) \le 3\}$ i.e. that is the set of all outcomes in S for which X takes a value at most 3.

Definition For a random variable X, the range of X is the set of all values taken by X. We denote it by Range(X). Thus

$$Range(X) = \{ x \in \mathbb{R} : X(s) = x \text{ for some } s \in S \}.$$

Definition Let X be a random variable X. The probability mass function (or pmf) of X is the function from Range(X) to \mathbb{R} given by

$$x \mapsto \mathbb{P}(X = r)$$
 for each $r \in Range(X)$.

Let X be a random variable X. The *cumulative distribution function* (or cdf) of X is the function from \mathbb{R} to \mathbb{R} given by

$$x \mapsto \mathbb{P}(X \leq r)$$
 for each $r \in \mathbb{R}$.

Note that we are taking the domain of the pmf of X to be Range(X) and the domain of the cdf of X to be the whole of \mathbb{R} .

Example A biased coin which has probability p of coming up heads is tossed three times. Let X be the number of heads observed. So for example we have

X(hht) = 2 (remember that X is a function from S to \mathbb{R} so each element of S is mapped by X to a real number, in this case to 2). The event "X = 2" is the set $\{hht, hth, thh\}$ so

$$\mathbb{P}(X = 2) = \mathbb{P}(\{hht, hth, thh\}) = 3p^2(1-p).$$

We have $Range(X) = \{0, 1, 2, 3\}$. We can work $\mathbb{P}(X = r)$ for the other values of $r \in \{0, 1, 2, 3\}$ and obtain the following probability mass function:

Definition Let X be a random variable defined on a sample space S. We say X is *discrete* if there exists a real number c > 0 such that $|r_1 - r_2| \ge c$ for all $r_1, r_2 \in Range(X)$.

Informally X is discrete if the values X takes are separated by "gaps". It follows that if Range(X) is finite, or $Range(X) = \mathbb{N}$ (for example when X equals the number of tosses of a coin until the first head is seen), then X is discrete. If Range(X) is equal to a subinterval of \mathbb{R} such as $\{x \in \mathbb{R} : x \geq 0\}$ (for example the time I wait until the DLR arrives) then X is not discrete.

Remark An important property of a discrete random variable X is that its range is either finite or countably infinite. This means that if we know the pmf for X then we can use Kolmogorov's third axiom to calculate the probability of any event by adding together the probabilities of the outcomes which belong to it. In particular, for any $r_0 \in \mathbb{R}$, we have

$$\mathbb{P}(X \le r_0) = \sum_{r \in Range(X), \, r \le r_0} \mathbb{P}(X = r)$$

so we can calculate the cdf of X from its pmf. We saw an example in lectures which showed that this need not be true when X is not discrete.

11 Discrete Random variables

In this section we define the expectation and variance of a discrete random variable and deduce some basic properties.

Proposition 11.1. Let X be a discrete random variable on a sample space S. Then

$$\sum_{r \in Range(X)} \mathbb{P}(X = r) = 1$$

Proof The fact that the range of X is either finite or countably infinite means that we can use Kolmogorov's second and third axioms to deduce that

$$\sum_{r \in Range(X)} \mathbb{P}(X = r) = P(S) = 1$$

•

This proposition is a useful to check we have calculated the probability mass function of X correctly.

Definition The *expectation* of a discrete random variable X is

$$\mathcal{E}(X) = \sum_{r \in Range(X)} r \, \mathbb{P}(X = r)$$

Thus the expectation of X is a 'weighted average' of the values taken by X, where each value $r \in Range(X)$ is weighted by the probability it occurs.

Sometimes it is useful to consider functions of random variables. If X is a random variable on S and $g : \mathbb{R} \to \mathbb{R}$ then Y = g(X) is a new random variable on X which maps S into \mathbb{R} by Y(s) = g(X(s)) for all outcomes $s \in S$. For example Y = 2X - 7 or $Z = X^2$ are both new random variables on S.

Proposition 11.2 (Properties of expectation). Let X be a discrete random variable.

- (a) Suppose $b, c \in \mathbb{R}$. Then E(bX + c) = bE(X) + c.
- (b) If $m, M \in \mathbb{R}$ and $m \leq X(s) \leq M$ for all $s \in S$ then

$$m \leq \mathrm{E}(X) \leq M.$$

(c) If there exists $k \in \mathbb{R}$ with $\mathbb{P}(X = k - t) = \mathbb{P}(X = k + t)$ for all $t \in \mathbb{R}$ then $\mathbb{E}(X) = k$. **Proof** (a) We have

$$\begin{split} \mathbf{E}(bX+c) &= \sum_{r \in Range(X)} (br+c) \mathbb{P}(X=r) \\ &= \sum_{r \in Range(X)} br \mathbb{P}(X=r) + \sum_{r \in Range(X)} c \mathbb{P}(X=r) \\ &= b \sum_{r \in Range(X)} r \mathbb{P}(X=r) + c \sum_{r \in Range(X)} \mathbb{P}(X=r) \\ &= b \mathbf{E}(X) + c \end{split}$$

where the fourth equality uses the definition of E(X) for the first term and Proposition 11.1 for the second term.

- (b) See Exercises 7, Q3.
- (c) We have

$$\begin{split} \mathbf{E}(X) &= \sum_{r \in Range(X)} r \mathbb{P}(X = r) \\ &= k \mathbb{P}(X = k) + \sum_{\substack{k > 0 \\ k - t \in Range(X)}} \left[(k - t) \mathbb{P}(X = k - t) + (k + t) \mathbb{P}(X = k + t) \right] \\ &= k \mathbb{P}(X = k) + \sum_{\substack{k - t \in Range(X) \\ k - t \in Range(X)}} \left[k \mathbb{P}(X = k - t) + k \mathbb{P}(X = k + t) \right] \\ &= k \sum_{\substack{r \in Range(X) \\ r \in Range(X)}} \mathbb{P}(X = r) \\ &= k \end{split}$$

where:

- the second and fourth equalities follow by putting r = k t when r < k and r = k + t when r > k;
- the third equality holds because $\mathbb{P}(X = k t) = \mathbb{P}(X = k + t)$ so the terms involving t cancel;

•

• the fifth equality uses Proposition 11.1.

Definition Let X be a discrete random variable with $E(X) = \mu$. Then the *variance* of X is

$$\operatorname{Var}(X) = \sum_{r \in \operatorname{Range}(X)} [r - \mu]^2 \mathbb{P}(X = r).$$

Thus $\operatorname{Var}(X)$ is the expected value of $[X - \mu]^2$ i.e. the square of the distance from X to E(X). It measures how the probability distribution of X is concentrated about its expectation. A small variance means X is sharply concentrated and a large variance means X is spread out.