10 Introduction to Random Variables

Suppose we have a sample space S. Sometimes we are interested not in the exact outcome but only some consequence of it (for example I toss 3 coins but I only care about how many heads occur not the exact outcome). In this sort of situation random variables are useful.

Definition A random variable is a function from S to \mathbb{R}.
Notation We usually use capital letters for random variables e.g. X, Y, Z, even though they are functions.
Remark An (informal) way of thinking is to regard a random variable as a question about the outcome which has an answer which is a real number (e.g. how many heads occur in a coin tossing experiment) or a measurement made on the outcome.

Given a random variable X on S, statements like " $X=3$ " or " $X \leq 3$ " are events. Specifically " $X=3$ " is the event $\{s \in S: X(s)=3\}$ i.e. the set of all outcomes in S for which which X takes the value 3 . Similarly " $X \leq 3$ " is the event $\{s \in S: X(s) \leq 3\}$ i.e. that is the set of all outcomes in S for which X takes a value at most 3 .

Definition For a random variable X, the range of X is the set of all values taken by X. We denote it by Range (X). Thus

$$
\operatorname{Range}(X)=\{x \in \mathbb{R}: X(s)=x \text { for some } s \in S\} .
$$

Definition Let X be a random variable X. The probability mass function (or pmf) of X is the function from $\operatorname{Range}(X)$ to \mathbb{R} given by

$$
x \mapsto \mathbb{P}(X=r) \text { for each } r \in \operatorname{Range}(X) \text {. }
$$

Let X be a random variable X. The cumulative distribution function (or cdf) of X is the function from \mathbb{R} to \mathbb{R} given by

$$
x \mapsto \mathbb{P}(X \leq r) \text { for each } r \in \mathbb{R} .
$$

Note that we are taking the domain of the pmf of X to be Range (X) and the domain of the cdf of X to be the whole of \mathbb{R}.

Example A biased coin which has probability p of coming up heads is tossed three times. Let X be the number of heads observed. So for example we have
$X(h h t)=2$ (remember that X is a function from S to \mathbb{R} so each element of S is mapped by X to a real number, in this case to 2). The event " $X=2$ " is the set $\{h h t, h t h, t h h\}$ so

$$
\mathbb{P}(X=2)=\mathbb{P}(\{h h t, h t h, t h h\})=3 p^{2}(1-p) .
$$

We have $\operatorname{Range}(X)=\{0,1,2,3\}$. We can work $\mathbb{P}(X=r)$ for the other values of $r \in\{0,1,2,3\}$ and obtain the following probability mass function:

$$
\begin{array}{r|cccc}
r: & 0 & 1 & 2 & 3 \\
\hline P(X=r): & (1-p)^{3} & 3 p(1-p)^{2} & 3 p^{2}(1-p) & p^{3}
\end{array}
$$

Definition Let X be a random variable defined on a sample space S. We say X is discrete if there exists a real number $c>0$ such that $\left|r_{1}-r_{2}\right| \geq c$ for all $r_{1}, r_{2} \in \operatorname{Range}(X)$.

Informally X is discrete if the values X takes are separated by "gaps". It follows that if $\operatorname{Range}(X)$ is finite, or $\operatorname{Range}(X)=\mathbb{N}$ (for example when X equals the number of tosses of a coin until the first head is seen), then X is discrete. If Range (X) is equal to a subinterval of \mathbb{R} such as $\{x \in \mathbb{R}: x \geq 0\}$ (for example the time I wait until the DLR arrives) then X is not discrete.

Remark An important property of a discrete random variable X is that its range is either finite or countably infinite. This means that if we know the pmf for X then we can use Kolmogorov's third axiom to calculate the probability of any event by adding together the probabilities of the outcomes which belong to it. In particular, for any $r_{0} \in \mathbb{R}$, we have

$$
\mathbb{P}\left(X \leq r_{0}\right)=\sum_{r \in \text { Range }(X), r \leq r_{0}} \mathbb{P}(X=r)
$$

so we can calculate the cdf of X from its pmf. We saw an example in lectures which showed that this need not be true when X is not discrete.

11 Discrete Random variables

In this section we define the expectation and variance of a discrete random variable and deduce some basic properties.

Proposition 11.1. Let X be a discrete random variable on a sample space S. Then

$$
\sum_{r \in \operatorname{Range}(X)} \mathbb{P}(X=r)=1
$$

Proof The fact that the range of X is either finite or countably infinite means that we can use Kolmogorov's second and third axioms to deduce that

$$
\sum_{r \in \text { Range }(X)} \mathbb{P}(X=r)=P(S)=1
$$

This proposition is a useful to check we have calculated the probability mass function of X correctly.
Definition The expectation of a discrete random variable X is

$$
\mathrm{E}(X)=\sum_{r \in \operatorname{Range}(X)} r \mathbb{P}(X=r)
$$

Thus the expectation of X is a 'weighted average' of the values taken by X, where each value $r \in \operatorname{Range}(X)$ is weighted by the probability it occurs.

Sometimes it is useful to consider functions of random variables. If X is a random variable on S and $g: \mathbb{R} \rightarrow \mathbb{R}$ then $Y=g(X)$ is a new random variable on X which maps S into \mathbb{R} by $Y(s)=g(X(s))$ for all outcomes $s \in S$. For example $Y=2 X-7$ or $Z=X^{2}$ are both new random variables on S.

Proposition 11.2 (Properties of expectation). Let X be a discrete random variable.
(a) Suppose $b, c \in \mathbb{R}$. Then $\mathrm{E}(b X+c)=b \mathrm{E}(X)+c$.
(b) If $m, M \in \mathbb{R}$ and $m \leq X(s) \leq M$ for all $s \in S$ then

$$
m \leq \mathrm{E}(X) \leq M
$$

(c) If there exists $k \in \mathbb{R}$ with $\mathbb{P}(X=k-t)=\mathbb{P}(X=k+t)$ for all $t \in \mathbb{R}$ then $\mathrm{E}(X)=k$.

Proof (a) We have

$$
\begin{aligned}
\mathrm{E}(b X+c) & =\sum_{r \in \text { Range }(X)}(b r+c) \mathbb{P}(X=r) \\
& =\sum_{r \in \text { Range }(X)} b r \mathbb{P}(X=r)+\sum_{r \in \text { Range }(X)} c \mathbb{P}(X=r) \\
& =b \sum_{r \in \text { Range }(X)} r \mathbb{P}(X=r)+c \sum_{r \in \text { Range }(X)} \mathbb{P}(X=r) \\
& =b \mathrm{E}(X)+c
\end{aligned}
$$

where the fourth equality uses the definition of $\mathrm{E}(X)$ for the first term and Proposition 11.1 for the second term.
(b) See Exercises 7, Q3.
(c) We have

$$
\begin{aligned}
\mathrm{E}(X) & =\sum_{r \in \operatorname{Range}(X)} r \mathbb{P}(X=r) \\
& =k \mathbb{P}(X=k)+\sum_{\substack{t>0 \\
k-t \in \operatorname{Range}(X)}}[(k-t) \mathbb{P}(X=k-t)+(k+t) \mathbb{P}(X=k+t)] \\
& =k \mathbb{P}(X=k)+\sum_{\substack{t>0 \\
k-t \in \operatorname{Range}(X)}}[k \mathbb{P}(X=k-t)+k \mathbb{P}(X=k+t)] \\
& =k \sum_{r \in \text { Range }(X)} \mathbb{P}(X=r) \\
& =k
\end{aligned}
$$

where:

- the second and fourth equalities follow by putting $r=k-t$ when $r<k$ and $r=k+t$ when $r>k$;
- the third equality holds because $\mathbb{P}(X=k-t)=\mathbb{P}(X=k+t)$ so the terms involving t cancel;
- the fifth equality uses Proposition 11.1.

Definition Let X be a discrete random variable with $\mathrm{E}(X)=\mu$. Then the variance of X is

$$
\operatorname{Var}(X)=\sum_{r \in \operatorname{Range}(X)}[r-\mu]^{2} \mathbb{P}(X=r)
$$

Thus $\operatorname{Var}(X)$ is the expected value of $[X-\mu]^{2}$ i.e. the square of the distance from X to $E(X)$. It measures how the probability distribution of X is concentrated about its expectation. A small variance means X is sharply concentrated and a large variance means X is spread out.

