
10 Introduction to Random Variables

Suppose we have a sample space S. Sometimes we are interested not in the
exact outcome but only some consequence of it (for example I toss 3 coins
but I only care about how many heads occur not the exact outcome). In this
sort of situation random variables are useful.

Definition A random variable is a function from S to R.

Notation We usually use capital letters for random variables e.g. X, Y, Z,
even though they are functions.

Remark An (informal) way of thinking is to regard a random variable as
a question about the outcome which has an answer which is a real number
(e.g. how many heads occur in a coin tossing experiment) or a measurement
made on the outcome.

Given a random variable X on S, statements like “X = 3” or “X ≤ 3”
are events. Specifically “X = 3” is the event {s ∈ S : X(s) = 3} i.e. the set
of all outcomes in S for which which X takes the value 3. Similarly “X ≤ 3”
is the event {s ∈ S : X(s) ≤ 3} i.e. that is the set of all outcomes in S for
which X takes a value at most 3.

Definition For a random variable X, the range of X is the set of all values
taken by X. We denote it by Range(X). Thus

Range(X) = {x ∈ R : X(s) = x for some s ∈ S}.

Definition Let X be a random variable X. The probability mass function
(or pmf) of X is the function from Range(X) to R given by

x 7→ P(X = r) for each r ∈ Range(X).

Let X be a random variable X. The cumulative distribution function (or
cdf) of X is the function from R to R given by

x 7→ P(X ≤ r) for each r ∈ R.

Note that we are taking the domain of the pmf of X to be Range(X) and
the domain of the cdf of X to be the whole of R.

Example A biased coin which has probability p of coming up heads is tossed
three times. Let X be the number of heads observed. So for example we have
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X(hht) = 2 (remember that X is a function from S to R so each element of
S is mapped by X to a real number, in this case to 2). The event ”X = 2”
is the set {hht, hth, thh} so

P(X = 2) = P({hht, hth, thh}) = 3p2(1− p).

We have Range(X) = {0, 1, 2, 3}. We can work P(X = r) for the other
values of r ∈ {0, 1, 2, 3} and obtain the following probability mass function:

r : 0 1 2 3
P (X = r) : (1− p)3 3p(1− p)2 3p2(1− p) p3

Definition Let X be a random variable defined on a sample space S. We
say X is discrete if there exists a real number c > 0 such that |r1 − r2| ≥ c
for all r1, r2 ∈ Range(X).

Informally X is discrete if the values X takes are separated by “gaps”. It
follows that if Range(X) is finite, or Range(X) = N (for example when X
equals the number of tosses of a coin until the first head is seen), then X is
discrete. If Range(X) is equal to a subinterval of R such as {x ∈ R : x ≥ 0}
(for example the time I wait until the DLR arrives) then X is not discrete.

Remark An important property of a discrete random variable X is that
its range is either finite or countably infinite. This means that if we know
the pmf for X then we can use Kolmogorov’s third axiom to calculate the
probability of any event by adding together the probabilities of the outcomes
which belong to it. In particular, for any r0 ∈ R, we have

P(X ≤ r0) =
∑

r∈Range(X), r≤r0

P(X = r)

so we can calculate the cdf of X from its pmf. We saw an example in lectures
which showed that this need not be true when X is not discrete.

11 Discrete Random variables

In this section we define the expectation and variance of a discrete random
variable and deduce some basic properties.
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Proposition 11.1. Let X be a discrete random variable on a sample space
S. Then ∑

r∈Range(X)

P(X = r) = 1

Proof The fact that the range of X is either finite or countably infinite means
that we can use Kolmogorov’s second and third axioms to deduce that

∑

r∈Range(X)

P(X = r) = P (S) = 1

•

This proposition is a useful to check we have calculated the probability
mass function of X correctly.

Definition The expectation of a discrete random variable X is

E(X) =
∑

r∈Range(X)

r P(X = r)

Thus the expectation of X is a ‘weighted average’ of the values taken by X,
where each value r ∈ Range(X) is weighted by the probability it occurs.

Sometimes it is useful to consider functions of random variables. If X is
a random variable on S and g : R → R then Y = g(X) is a new random
variable on X which maps S into R by Y (s) = g(X(s)) for all outcomes
s ∈ S. For example Y = 2X − 7 or Z = X2 are both new random variables
on S.

Proposition 11.2 (Properties of expectation). Let X be a discrete random
variable.

(a) Suppose b, c ∈ R. Then E(bX + c) = bE(X) + c.

(b) If m,M ∈ R and m ≤ X(s) ≤ M for all s ∈ S then

m ≤ E(X) ≤ M.

(c) If there exists k ∈ R with P(X = k − t) = P(X = k + t) for all t ∈ R
then E(X) = k.
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Proof (a) We have

E(bX + c) =
∑

r∈Range(X)

(br + c)P(X = r)

=
∑

r∈Range(X)

brP(X = r) +
∑

r∈Range(X)

cP(X = r)

= b
∑

r∈Range(X)

rP(X = r) + c
∑

r∈Range(X)

P(X = r)

= bE(X) + c

where the fourth equality uses the definition of E(X) for the first term and
Proposition 11.1 for the second term.

(b) See Exercises 7, Q3.

(c) We have

E(X) =
∑

r∈Range(X)

rP(X = r)

= kP(X = k) +
∑
t>0

k−t∈Range(X)

[(k − t)P(X = k − t) + (k + t)P(X = k + t)]

= kP(X = k) +
∑
t>0

k−t∈Range(X)

[kP(X = k − t) + kP(X = k + t)]

= k
∑

r∈Range(X)

P(X = r)

= k

where:

• the second and fourth equalities follow by putting r = k− t when r < k
and r = k + t when r > k;

• the third equality holds because P(X = k − t) = P(X = k + t) so the
terms involving t cancel;

• the fifth equality uses Proposition 11.1.

•
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Definition Let X be a discrete random variable with E(X) = µ. Then the
variance of X is

Var(X) =
∑

r∈Range(X)

[r − µ]2 P(X = r).

Thus Var(X) is the expected value of [X − µ]2 i.e. the square of the dis-
tance from X to E(X). It measures how the probability distribution of X
is concentrated about its expectation. A small variance means X is sharply
concentrated and a large variance means X is spread out.
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