
9 Conditional Probability

Suppose A and B are events in a sample space S. If we are told that B has
occurred what effect does this have on the probability that A has occurred?
We can use conditional probability to answer this question.

Definition If A and B are events and P(B) 6= 0 then the conditional
probability of A given B is

P(A ∩B)

P(B)
.

This is usually denoted by P(A|B).

Note that the definition does not assume that A happens after B. One
way of thinking of this is to imagine the experiment is performed secretly and
the fact that B occurred is revealed to you (without the full outcome being
revealed). The conditional probability of A given B is the new probability
of A in these circumstances.

This is an important definition but it is often the source of great confusion;
make sure you understand it and can use it. Also, don’t confuse P(A|B) with
P(A \B).

One use of conditional probability is to calculate the probability of the
intersection of several events. We saw in the last section that if the events
are mutually independent then the probability of their intersection is just
the product of their probabilities. If the events are not mutually indepen-
dent then we need to use conditional probability. We will need to consider
conditional probabilities like P(A3|A1 ∩ A2) i.e. the conditional probability
of A3 given that both A1 and A2 occur.

Theorem 9.1. Let A1, A2, . . . , An be events in a sample space S. Suppose
that P(A1 ∩ A2 ∩ . . . ∩ An−1) > 0. Then

P(A1 ∩ A2 ∩ . . . ∩ An) =

P(A1)× P(A2|A1)× P(A3|A1 ∩ A2)× . . .× P(An|A1 ∩ A2 ∩ . . . ∩ An−1).

We use induction on n to prove this. The idea is that we first prove that
the statement is true for n = 2 (the base case of the induction). We then
assume that n ≥ 3 and that the statement of the theorem is true whenever
we have less than n events (the induction hypothesis). We then use this
assumption to prove that the statement of the theorem is true when we have
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n events (the inductive step). This is an important proof technique. You will
meet it again in many other modules.

Proof of Theorem 9.1

Base case. Suppose n = 2. Using the definition of conditional probability we
have

P(A1)P(A2|A1) = P(A1)
P(A2 ∩ A1)

P(A1)
= P(A1 ∩ A2)

since A2 ∩ A1 = A1 ∩ A2. Thus the statement of the theorem is true when
n = 2.

Induction Hypothesis Suppose that n ≥ 3 and that the statement of the
theorem is true whenever we have less than n events. In particular the
statement of the theorem is true when we have n − 1 events. Since P(A1 ∩
A2 ∩ . . . ∩ An−2) ≥ P(A1 ∩ A2 ∩ . . . ∩ An−1) > 0 we may deduce that

P(A1 ∩ A2 ∩ . . . ∩ An−1) =

P(A1)× P(A2|A1)× P(A3|A1 ∩ A2)× . . .× P(An−1|A1 ∩ A2 ∩ . . . ∩ An−2).

Inductive Step Let B = A1 ∩ A2 ∩ · · · ∩ An−1. Then

P(A1 ∩ A2 ∩ . . . ∩ An) =

= P(B ∩ An)

= P(B)× P(An|B)

= P(A1 ∩ A2 ∩ · · · ∩ An−1)× P(An|A1 ∩ A2 ∩ · · · ∩ An−1)

= P(A1)× P(A2|A1)× P(A3|A1 ∩ A2)× · · · × P(An|A1 ∩ A2 ∩ · · · ∩ An−1)

where the second equality uses the base case to evaluate P(B ∩ An), the
third equality is a direct substitution for B, and the fourth equality uses the
induction hypothesis to evaluate P(A1 ∩A2 ∩ · · · ∩An−1). Thus the truth of
of the theorem for less than n events implies the theorem is also true when
we have n events.

We may now deduce that the theorem is true for all values of n. •

We saw examples in lectures of how this theorem can be used to calculate
the probability of the intersection of several events.
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The Theorem of Total Probability

In this subsection we will see how conditional probability can be used to
calculate the probability of an event when the sample space has been ‘parti-
tioned’ into several events.

Definition The events E1, E2, . . . , En partition S if they are non-empty
pairwise disjoint sets and their union is the whole of S.

Theorem 9.2 (The Theorem of Total Probability). Suppose that E1, E2, . . . , Em

are events which partition the sample space S, and that P(Ei) > 0 for all
1 ≤ i ≤ m. Let A be an event in S. Then

P(A) =
m∑

i=1

P(A|Ei)P(Ei).

Proof Let Ai = A∩Ei for 1 ≤ i ≤ m. We have P(A|Ei) = P(A∩Ei)/P(Ei) =
P(Ai)/P(Ei) so P(Ai) = P(A|Ei)P(Ei). The fact that E1, E2, . . . Em parti-
tion S implies that A1, A2, . . . Am partition A. Hence by Kolmogorov’s third
axiom:

P(A) =
m∑

i=1

P(Ai) =
m∑

i=1

P(A|Ei)P(Ei).

•

There is also an analogue of the theorem of total probability for condi-
tional probabilities.

Theorem 9.3. Suppose that E1, E2, . . . , Em are events which partition the
sample space S. Let A and B be an events in S with P(B ∩ Ei) > 0 for all
1 ≤ i ≤ m. Then

P(A|B) =
m∑

i=1

P(A|B ∩ Ei)P(Ei|B).

Proof The fact that E1, E2, . . . Em partition S implies that

A ∩B ∩ E1, A ∩B ∩ E2, . . . , A ∩B ∩ Em

partition A ∩B. Hence by Kolmogorov’s third axiom:

P(A ∩B) =
m∑

i=1

P(A ∩B ∩ Ei).
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Hence

P(A|B) =
P(A ∩B)

P(B)

=
m∑

i=1

P(A ∩B ∩ Ei)

P(B)

=
m∑

i=1

P(A ∩B ∩ Ei)

P(B ∩ Ei)
× P(B ∩ Ei)

P(B)

=
m∑

i=1

P(A|B ∩ Ei)P(Ei|B)

•

Special cases of Theorems 9.2 and 9.3 occur when E is an event with both
P(E) > 0 and P(Ec) > 0 i.e. 0 < P(E) < 1. Then E,Ec partitions S so for
any event A we have

P(A) = P(A|E)P(E) + P(A|Ec)P(Ec).

Furthermore, if B is an event such that P(E|B) > 0 and P(Ec|B) > 0, then

P(A|B) = P(A|B ∩ E)P(E|B) + P(A|B ∩ Ec)P(Ec|B).

Example I have two coins in a bag. One is fair and the other has a head
on both sides. I select a coin at random from the bag, then throw it twice
(without determining which coin it is).
Question 1 What is the probability that the first throw is a head?
Question 2 What is the probability that the second throw is a head, given
that the first throw is a head?

Answers Let F be the event that the fair coin is chosen, H1 be the event
that the first throw is a head, and H2 be the event that the second throw is
a head. By Theorem 9.2

P(H1) = P(H1|F )P(F ) + P(H1|F c)P(F c) =
1

2
× 1

2
+ 1× 1

2
=

3

4

This answers Question 1. By Theorem 9.3 we also have

P(H2|H1) = P(H2|F ∩H1)P(F |H1) + P(H2|F c ∩H1)P(F c|H1) (1)
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We need to evaluate the terms on the right hand side of this equation. Since
P(H1|F ∩H1) is the probability that I get a head on the second throw given
that I chose the fair coin and got a head on the first throw, we have P(H1|F ∩
H1) = 1/2 (the assumption that I got a head on the first throw is irrelevent).
Similarly P(H2|F c∩H1) = 1. It remains to calculate P(F |H1) and P(F c|H1).
It is not obvious what these are, but it is clear that P(H1|F ) = 1/2 and
P(H1)|F c) = 1. We can use these values to calculate P(F |H1) and P(F c|H1)
as follows. We have

P(F |H1) =
P(F ∩H1)

P(H1)
=
P(F ∩H1)

P(F )
× P(F )

P(H1)
= P(H1|F )× P(F )

P(H1)
=

1
2
× 1

2
3
4

=
1

3

using the answer to Question 1. We can show similarly that P(F c|H1) = 2/3,
or more simply use P(F c|H1) = 1−P(F |H1). Substituting into (1) we obtain

P(H2|H1) =
1

2
× 1

3
+ 1× 2

3
=

5

6

Bayes Theorem

We saw in the above example that we could use P(H1|F ) to calculate P(F |H1).
The following theorem formalizes this idea.

Theorem 9.4 (Bayes’ theorem). Suppose A and B are events with P(A) > 0
and P(B) > 0. Then

P(B|A) = P(A|B)× P(B)

P(A)
.

Proof We have

P(A|B)× P(B)

P(A)
=
P(A ∩B)

P(B)
× P(B)

P(A)
=
P(A ∩B)

P(A)
= P(B|A)

•
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