
8 Independent Events

Definition We say that the events A and B are independent if

P(A ∩B) = P(A)× P(B).

You may assume that two events are independent in the following situa-
tions:

(i) they are clearly physically unrelated (eg depend on different coin tosses),

(ii) you calculate their probabilities and find that P(A ∩B) = P(A)P(B)

(iii) the question tells you that the events are independent!

Remark (Warning)

(a) Independence is a weaker property than being physically unrelated. For
example we saw in lectures that if a fair die is rolled twice then the event
“first roll is a 6” and the event “both rolls produce the same number” are
independent even though they are physically related.
(b) Saying two events are independent is completely different to saying they
are disjoint: two disjoint events are never independent (unless one has prob-
ability 0). Why not?.

If we have more than two events things get more complicated. We saw
an example where any two of A,B,C were independent but

P(A ∩B ∩ C) 6= P(A)P(B)P(C).

Definition We say that the events A1, A2, . . . , An are mutually independent
if for all 1 ≤ i1 < i2 < · · · < it ≤ n we have

P(Ai1 ∩ Ai2 ∩ · · · ∩ Ait) = P(Ai1)P(Ai2) . . .P(Ait).

That is to say for every subset I of the events, the probability that all
events in I occur is the product of the probabilities of the individual events
in I. If you find this confusing then think what it says in the case n = 3
first.
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Example A coin which has probability p of showing heads is tossed n times
in succession. What is the probability that heads comes up exactly r times?

We may assume that the results of the tosses are mutually independent
(they are physically unrelated things). So to find the probability of a par-
ticular sequence of r heads and n − r tails we just multiply together the
appropriate probability for each toss. That is

P(h . . . . . . h︸ ︷︷ ︸
r heads

t . . . . . . t︸ ︷︷ ︸
n−r tails

) = pr(1− p)n−r.

Any other sequence of r heads and n− r tails will have the same probability
pr(1− p)n−r. There are

(
n
r

)
such sequences and so

P(r heads and n− r tails in any order) =

(
n

r

)
pr(1− p)n−r.

We will see this example again when we discuss the binomial distribution.

We saw several examples of calculating probabilities of events like this
i.e. events which are intersections and unions of several independent events.
There are more examples on the exercise sheets.

9 Conditional Probability

Suppose A and B are events in a sample space S. If we are told that B has
occurred what effect does this have on the probability that A has occurred?

Definition If A and B are events and P(B) 6= 0 then the conditional
probability of A given B is

P(A ∩B)

P(B)
.

This is usually denoted by P(A|B).

Note that the definition does not assume that A happens after B. One
way of thinking of this is to imagine the experiment is performed secretly and
the fact that B occurred is revealed to you (without the full outcome being
revealed). The conditional probability of A given B is the new probability
of A in these circumstances.
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This is an important definition but it is often the source of great confusion;
make sure you understand it and can use it. Also, don’t confuse P(A|B) with
P(A \B).

One use of conditional probability is to calculate the probability of the
intersection of several events. We saw in the last section that if the events
are mutually independent then the probability of their intersection is just
the product of their probabilities. If the events are not mutually indepen-
dent then we need to use conditional probability. We will need to consider
conditional probabilities like P(A3|A1 ∩ A2) i.e. the conditional probability
of A1 given that both A2 and A3 occur.

Theorem 9.1. Let A1, A2, . . . , An be events in a sample space S. Suppose
that P(A1 ∩ A2 ∩ . . . ∩ An−1) > 0. Then

P(A1 ∩ A2 ∩ . . . ∩ An) =

P(A1)× P(A2|A1)× P(A3|A1 ∩ A2)× . . .× P(An|A1 ∩ A2 ∩ . . . ∩ An−1).

We use induction on n to prove this. The idea is that we first prove that
the statement is true for n = 2 (the base case of the induction). We then
assume that n ≥ 3 and that the statement of the theorem is true whenever
we have less than n events (the induction hypothesis). We then use this
assumption to prove that the statement of the theorem is true when we have
n events (the inductive step). This is an important proof technique. You will
meet it again in many other modules.

Proof of Theorem 9.1

Base case. Suppose n = 2. Using the definition of conditional probability we
have

P(A1)P(A2|A1) = P(A1)
P(A2 ∩ A1)

P(A1)
= P(A1 ∩ A2)

since A2 ∩ A1 = A1 ∩ A2. Thus the statement of the theorem is true when
n = 2.

Induction Hypothesis Suppose that n ≥ 3 and that the statement of the
theorem is true whenever we have less than n events. In particular the
statement of the theorem is true when we have n − 1 events. Since P(A1 ∩
A2 ∩ . . . ∩ An−2) ≥ P(A1 ∩ A2 ∩ . . . ∩ An−1) > 0 we may deduce that

P(A1 ∩ A2 ∩ . . . ∩ An−1) =

P(A1)× P(A2|A1)× P(A3|A1 ∩ A2)× . . .× P(An−1|A1 ∩ A2 ∩ . . . ∩ An−2).
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Inductive Step Let B = A1 ∩ A2 ∩ · · · ∩ An−1. Then

P(A1 ∩ A2 ∩ . . . ∩ An) =

= P(B ∩ An)

= P(B)× P(An|B)

= P(A1 ∩ A2 ∩ · · · ∩ An−1)× P(An|A1 ∩ A2 ∩ · · · ∩ An−1)

= P(A1)× P(A2|A1)× P(A3|A1 ∩ A2)× · · · × P(An|A1 ∩ A2 ∩ · · · ∩ An−1)

where the second equality uses the base case to evaluate P(B ∩ An), the
third equality is a direct substitution for B, and the fourth equality uses the
induction hypothesis to evaluate P(A1 ∩A2 ∩ · · · ∩An−1). Thus the truth of
of the theorem for less than n events implies the theorem is also true when
we have n events.

We may now deduce that the theorem is true for all values of n. •
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