3 Sequences

An ordered n-tuple ($a_{1}, a_{2}, \ldots, a_{n}$) is also called a sequence of length n. Sometimes this is written as $\left(a_{i}\right)_{i=1}^{n}$. When $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is a sequence of numbers, we use the following notation for the sum or product of terms in the sequence.

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}
$$

and

$$
\prod_{i=1}^{n} a_{i}=a_{1} \times a_{2} \times \cdots \times a_{n}
$$

The i here is called a dummy variable. Note that

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k}
$$

so the letter which we choose to represent the dummy variable does not affect the sum (or product).

Proposition 3.1. Let $\left(a_{1}, a_{2}, \ldots\right)$ and $\left(b_{1}, b_{2}, \ldots\right)$ be sequences of real numbers.
(a) If $c, d \in \mathbb{R}$ then

$$
\sum_{k=1}^{n}\left(c a_{k}+d b_{k}\right)=c \sum_{k=1}^{n} a_{k}+d \sum_{k=1}^{n} b_{k}
$$

(b)

$$
\left(\sum_{i=1}^{n} a_{k}\right) \times\left(\sum_{j=1}^{n} b_{k}\right)=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i} b_{j}\right)
$$

The proof is straightforward - just rearrange the terms.
We will also consider infinite sequences. We denote such a sequence by $\left(a_{1}, a_{2}, a_{3}, \ldots\right)$, or $\left(a_{i}\right)_{i \geq 1}$, or $\left(a_{i}\right)_{i=1}^{\infty}$. We use the notation

$$
\sum_{i=1}^{\infty} a_{i} \quad \text { or } \quad \sum_{i \geq 1} a_{i}
$$

for summing infinite sequences of numbers. We can't really say what this means without a little more analysis (Calculus II). One special case we will need for this module, however, is when $a_{i}=r^{i}$ for some real number r with $-1<r<1$.

Proposition 3.2. Let r be a real number. Then

$$
\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}
$$

Furthermore, if $-1<r<1$, then

$$
\sum_{i=0}^{\infty} r^{i}=\frac{1}{1-r}
$$

4 Functions

Definition A function (or map) from a set X to a set Y is a rule which assigns an element of Y to each element of X. We denote the element of Y assigned to $x \in X$ by $f(x)$, and refer to $f(x)$ as the value of f at x. The set X is called the domain of f and the set Y is called the codomain of f. The range of f is the set of all elements of $y \in Y$ for which there exists an $x \in X$ such that $f(x)=y$. In set theoretic notation this is $\{f(x): x \in X\}$.

We use the notation

$$
f: X \rightarrow Y
$$

to mean " f is a function from X to Y ", and

$$
f: x \mapsto f(x)
$$

to mean " f maps x to $f(x)$ ".
Definition Suppose $f: X \rightarrow Y$. We say that:

- f is injective if for all $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ we have $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ i.e. no two distinct elements of X map to the same element of Y.
- f is surjective if for every $y \in Y$ there is an $x \in X$ with $f(x)=y$ i.e. every element in Y has an element of X mapped onto it.
- f is bijective if it is both injective and surjective.

An injective function is also called an injection. A surjective function is also called a surjection. A bijective function is also called a bijection.

Lemma 4.1. Suppose X and Y are finite sets and $f: X \rightarrow Y$.
(a) If f is injective then $|X| \leq|Y|$.
(b) If f is surjective then $|X| \geq|Y|$.
(c) If f is bijective then $|X|=|Y|$.

Proof Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$.
(a) Suppose f is injective. Then $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{m}\right)$ are all distinct elements of Y. Hence $|Y| \geq m=|X|$.
The proofs of (b) and (c) are left as an exercise.
Definition Suppose X, Y, Z are sets, $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Then the composite function $h: X \rightarrow Z$ is defined by $h(x)=g(f(x))$. We denote this function h by $g \circ f$.

Note that if $X=Z$ then $g \circ f$ and $f \circ g$ are both functions from X to X but they may be different functions.
Definition Suppose $f: X \rightarrow Y$. Then a function $g: Y \rightarrow X$ is an inverse to f if $(g \circ f)(x)=x$ for all $x \in X$ and $(f \circ g)(y)=y$ for all $y \in Y$.

It is important to remember that not every function has an inverse. The following result characterizes when a function does have an inverse.

Theorem 4.2. Suppose $f: X \rightarrow Y$. Then f has an inverse if and only if f is a bijection.

Proof There are two things to prove here. Firstly, we must show that if f has an inverse then f is a bijection. Secondly, we must show that if f is a bijection then f has an inverse.
First direction Let $g: Y \rightarrow X$ be an inverse for f. Given any $y \in Y$ let $x=g(y)$. Then $f(x)=f(g(y))=y$. Since this holds for all $y \in Y, f$ is surjective. If $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in X$ then applying g to both sides we have $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$ so $x_{1}=x_{2}$. Thus, f is injective. Hence f is both surjective and injective, so it is bijective and we have proved the first direction.

Second direction Suppose that f is bijective. Then f is surjective so given any $y \in Y$ there exists an $x \in X$ with $f(x)=y$. Moreover, there is only one such x, since f is injective. Define $g(y)$ to be equal to this x. Then $g(f(x))=x$ for any $x \in X$ and $f(g(y))=y$ for any $y \in Y$. So g is an inverse to f. This completes the proof of the second direction.

Countable sets

Lemma 4.1 suggests a way we can compare the 'cardinalities' of infinite sets.
Definition Let X and Y be infinite sets. We say that

- the cardinality of X is less than or equal to the cardinality of Y if there exists an injection $f: X \rightarrow Y$.
- the cardinality of X is equal to the cardinality of Y if there exists a bijection $f: X \rightarrow Y$.

Recall that $\mathbb{N}=\{0,1,2,3, \ldots\}$ is the set of natural numbers.
Definition let X be an infinite set. We say that X is countable if there exists a bijection $f: \mathbb{N} \rightarrow X$ i.e. X has the same cardinality as \mathbb{N}. If there is no bijection $f: \mathbb{N} \rightarrow X$ then we say that X is uncountable.

Recall that $\mathbb{Z}=\{0, \pm 1, \pm 2, \pm 3, \ldots\}$ is the set of integers and \mathbb{R} is the set of real numbers. We will show that \mathbb{Z} is countable and \mathbb{R} is uncountable.

Lemma 4.3. \mathbb{Z} is countable.
Proof (a) Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be defined by

$$
f(x)=\left\{\begin{array}{cl}
x / 2 & \text { if } x \in \mathbb{N} \text { is even } \\
-(x+1) / 2 & \text { if } x \in \mathbb{N} \text { is odd. }
\end{array}\right.
$$

It can be shown that f is a bijection (see Exercise Sheet 2). Hence \mathbb{Z} is countable.

Lemma 4.4. \mathbb{R} is uncountable.

Proof We use 'proof by contradiction'. (We assume that the statement we are trying to prove is false and show that this assumption implies a contradiction. The only way out of this contradiction is that the original statement must be true.)

Suppose that \mathbb{R} is countable. Then there exists a bijection $f: \mathbb{N} \rightarrow \mathbb{R}$. For each $i \in \mathbb{N}$ let $f(i)=r_{i}$. Since f is surjective, the sequence $\left(r_{0}, r_{1}, r_{2}, \ldots\right)$ must include all of the real numbers. We will obtain our contradiction by constructing a real number r such that $r \neq r_{i}$ for all $i \geq 0$.

Consider an 'infinite decimal expansion' of each number r_{i} (if r_{i} has a finite decimal expansion then we make it infinite by adding an infinite sequence of zeros after the last decimal place). We define a real number r with decimal expansion $r=0 . a_{0} a_{1} a_{2} \ldots$. as follows. For each $i \in \mathbb{N}$ put $a_{i}=5$ if the $(i+1)$ 'th digit after the decimal point in the decimal expansion of r_{i} is equal to 0 , and otherwise put $a_{i}=0$. Then $r \neq r_{i}$ for all $i \geq 0$ since r and r_{i} differ in their $(i+1)$ 'th decimal place. This means that $r \neq f(i)$ for all $i \geq 0$ which contradicts the assumption that f is surjective. The only way out of this contradiction is that \mathbb{R} is uncountable.

