3 Sequences

An ordered n-tuple (ay, as, . .., a,) is also called a sequence of length n. Some-
times this is written as (a;);_,. When (aj,as, ..., a,) is a sequence of num-
bers, we use the following notation for the sum or product of terms in the
sequence.

Zai:a1+a2—|—-~-—|—an
i=1

and

HCL,‘:CHXGQX"'XCL”.
i=1

The i here is called a dummy variable. Note that

n

Zai:a1+a2+---—l—an:Zak
=1

k=1

so the letter which we choose to represent the dummy variable does not affect
the sum (or product).

Proposition 3.1. Let (aj,as,...) and (b1, bs,...) be sequences of real num-
bers.

(a) If c,d € R then

n

(CCLk —|—dbk) = cZak +dek
k=1

k=1 k=1
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(b)

The proof is straightforward — just rearrange the terms.

We will also consider infinite sequences. We denote such a sequence by
(ar,az,as,...), or (a;);~,, or (a;);=;. We use the notation

00
E a; or E a;
i=1

i>1
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for summing infinite sequences of numbers. We can’t really say what this
means without a little more analysis (Calculus II). One special case we will
need for this module, however, is when a; = r* for some real number r with
—-l1<r<l

Proposition 3.2. Let r be a real number. Then

1 — rn—i—l

Zr 11—

Furthermore, if —1 <r <1, then

oo
> =

1=0

4 Functions

Definition A function (or map) from a set X to a set Y is a rule which
assigns an element of Y to each element of X. We denote the element of Y
assigned to x € X by f(z), and refer to f(x) as the value of f at x. The set
X is called the domain of f and the set Y is called the codomain of f. The
range of f is the set of all elements of y € Y for which there exists an z € X
such that f(z) = y. In set theoretic notation this is {f(z) : = € X},

We use the notation
f:X—=Y

to mean “f is a function from X to Y ”, and
frae f(z)

to mean “f maps x to f(z)”.
Definition Suppose f: X — Y. We say that:

o f is injective if for all z1, 29 € X with 21 # x5 we have f(x1) # f(x2)
i.e. no two distinct elements of X map to the same element of Y.

e f is surjective if for every y € Y there is an z € X with f(z) =y i.e.
every element in Y has an element of X mapped onto it.

e f is byective if it is both injective and surjective.
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An injective function is also called an injection. A surjective function is
also called a surjection. A bijective function is also called a bijection.

Lemma 4.1. Suppose X and Y are finite sets and f : X — Y.
(a) If f is injective then | X| < |Y].
(b) If f is surjective then |X| > |Y]|.
(c) If f is bijective then | X| = |Y|.

Proof Let X = {zy,29,..., 2} and Y = {y1,y2, ..., Ym }

(a) Suppose f is injective. Then f(z1), f(z2),..., f(x,) are all distinct ele-
ments of Y. Hence |Y| > m = | X].

The proofs of (b) and (c) are left as an exercise. o

Definition Suppose X,Y, 7 aresets, f: X — Y and g: Y — Z. Then the
composite function h : X — Z is defined by h(z) = g(f(z)). We denote this
function h by go f.

Note that if X = Z then go f and f o g are both functions from X to X
but they may be different functions.

Definition Suppose f: X — Y. Then a function g : Y — X is an inverse
to fif (go f)(z) =z forallz € X and (fog)(y) =y forallyeY.

It is important to remember that not every function has an inverse. The
following result characterizes when a function does have an inverse.

Theorem 4.2. Suppose f : X — Y. Then f has an inverse if and only if f
15 a byjection.

Proof There are two things to prove here. Firstly, we must show that if f
has an inverse then f is a bijection. Secondly, we must show that if f is a
bijection then f has an inverse.

First direction Let g : Y — X be an inverse for f. Given any y € Y let
x = ¢g(y). Then f(x) = f(g(y)) = y. Since this holds for all y € Y, f is
surjective. If f(z1) = f(xq) for some x1,25 € X then applying g to both
sides we have g(f(z1)) = g(f(x2)) so £ = x9. Thus, f is injective. Hence f
is both surjective and injective, so it is bijective and we have proved the first
direction.



Second direction Suppose that f is bijective. Then f is surjective so given
any y € Y there exists an x € X with f(z) = y. Moreover, there is only
one such z, since f is injective. Define g(y) to be equal to this x. Then
g(f(x)) = for any z € X and f(g(y)) =y for any y € Y. So g is an inverse
to f. This completes the proof of the second direction. °

Countable sets
Lemma 4.1 suggests a way we can compare the ‘cardinalities’ of infinite sets.

Definition Let X and Y be infinite sets. We say that

e the cardinality of X is less than or equal to the cardinality of Y if there
exists an injection f: X — Y.

e the cardinality of X s equal to the cardinality of Y if there exists a
bijection f: X — Y.
Recall that N = {0, 1,2, 3, ...} is the set of natural numbers.

Definition let X be an infinite set. We say that X is countable if there
exists a bijection f : N — X i.e. X has the same cardinality as N. If there
is no bijection f : N — X then we say that X is uncountable.

Recall that Z = {0,4+1,£2, 43, ...} is the set of integers and R is the set
of real numbers. We will show that Z is countable and R is uncountable.

Lemma 4.3. Z is countable.

Proof (a) Let f: N — Z be defined by

f(z) = x/2 if x € N is even,
| —(x+1)/2 if z € Nis odd.

It can be shown that f is a bijection (see Exercise Sheet 2). Hence Z is
countable. o

Lemma 4.4. R is uncountable.



Proof We use ‘proof by contradiction’. (We assume that the statement we
are trying to prove is false and show that this assumption implies a contra-
diction. The only way out of this contradiction is that the original statement
must be true.)

Suppose that R is countable. Then there exists a bijection f : N — R.
For each ¢ € N let f(i) = r;. Since f is surjective, the sequence (rq,r1, s, ...)
must include all of the real numbers. We will obtain our contradiction by
constructing a real number 7 such that r # r; for all ¢ > 0.

Consider an ‘infinite decimal expansion’ of each number r; (if ; has a
finite decimal expansion then we make it infinite by adding an infinite se-
quence of zeros after the last decimal place). We define a real number r with
decimal expansion r = 0.apaias..... as follows. For each ¢+ € N put a; = 5 if
the (i + 1)’th digit after the decimal point in the decimal expansion of r; is
equal to 0, and otherwise put a; = 0. Then r # r; for all ¢+ > 0 since r and r;
differ in their (i + 1)’th decimal place. This means that r # f(¢) for all ¢ > 0
which contradicts the assumption that f is surjective. The only way out of
this contradiction is that R is uncountable. °



