
3 Sequences

An ordered n-tuple (a1, a2, . . . , an) is also called a sequence of length n. Some-
times this is written as (ai)

n
i=1. When (a1, a2, . . . , an) is a sequence of num-

bers, we use the following notation for the sum or product of terms in the
sequence.

n∑
i=1

ai = a1 + a2 + · · ·+ an

and
n∏

i=1

ai = a1 × a2 × · · · × an.

The i here is called a dummy variable. Note that

n∑
i=1

ai = a1 + a2 + · · ·+ an =
n∑

k=1

ak

so the letter which we choose to represent the dummy variable does not affect
the sum (or product).

Proposition 3.1. Let (a1, a2, . . . ) and (b1, b2, . . . ) be sequences of real num-
bers.

(a) If c, d ∈ R then

n∑

k=1

(cak + dbk) = c

n∑

k=1

ak + d

n∑

k=1

bk

(b) (
n∑

i=1

ak

)
×

(
n∑

j=1

bk

)
=

n∑
i=1

(
n∑

j=1

aibj

)

The proof is straightforward – just rearrange the terms.

We will also consider infinite sequences. We denote such a sequence by
(a1, a2, a3, . . . ), or (ai)i≥1, or (ai)

∞
i=1. We use the notation

∞∑
i=1

ai or
∑
i≥1

ai
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for summing infinite sequences of numbers. We can’t really say what this
means without a little more analysis (Calculus II). One special case we will
need for this module, however, is when ai = ri for some real number r with
−1 < r < 1.

Proposition 3.2. Let r be a real number. Then

n∑
i=0

ri =
1− rn+1

1− r
.

Furthermore, if −1 < r < 1, then

∞∑
i=0

ri =
1

1− r
.

4 Functions

Definition A function (or map) from a set X to a set Y is a rule which
assigns an element of Y to each element of X. We denote the element of Y
assigned to x ∈ X by f(x), and refer to f(x) as the value of f at x. The set
X is called the domain of f and the set Y is called the codomain of f . The
range of f is the set of all elements of y ∈ Y for which there exists an x ∈ X
such that f(x) = y. In set theoretic notation this is {f(x) : x ∈ X}.

We use the notation
f : X → Y

to mean “f is a function from X to Y ”, and

f : x 7→ f(x)

to mean “f maps x to f(x)”.

Definition Suppose f : X → Y . We say that:

• f is injective if for all x1, x2 ∈ X with x1 6= x2 we have f(x1) 6= f(x2)
i.e. no two distinct elements of X map to the same element of Y .

• f is surjective if for every y ∈ Y there is an x ∈ X with f(x) = y i.e.
every element in Y has an element of X mapped onto it.

• f is bijective if it is both injective and surjective.

2



An injective function is also called an injection. A surjective function is
also called a surjection. A bijective function is also called a bijection.

Lemma 4.1. Suppose X and Y are finite sets and f : X → Y .

(a) If f is injective then |X| ≤ |Y |.
(b) If f is surjective then |X| ≥ |Y |.
(c) If f is bijective then |X| = |Y |.

Proof Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , ym}.
(a) Suppose f is injective. Then f(x1), f(x2), . . . , f(xm) are all distinct ele-
ments of Y . Hence |Y | ≥ m = |X|.
The proofs of (b) and (c) are left as an exercise. •

Definition Suppose X, Y, Z are sets, f : X → Y and g : Y → Z. Then the
composite function h : X → Z is defined by h(x) = g(f(x)). We denote this
function h by g ◦ f .

Note that if X = Z then g ◦ f and f ◦ g are both functions from X to X
but they may be different functions.

Definition Suppose f : X → Y . Then a function g : Y → X is an inverse
to f if (g ◦ f)(x) = x for all x ∈ X and (f ◦ g)(y) = y for all y ∈ Y .

It is important to remember that not every function has an inverse. The
following result characterizes when a function does have an inverse.

Theorem 4.2. Suppose f : X → Y . Then f has an inverse if and only if f
is a bijection.

Proof There are two things to prove here. Firstly, we must show that if f
has an inverse then f is a bijection. Secondly, we must show that if f is a
bijection then f has an inverse.

First direction Let g : Y → X be an inverse for f . Given any y ∈ Y let
x = g(y). Then f(x) = f(g(y)) = y. Since this holds for all y ∈ Y , f is
surjective. If f(x1) = f(x2) for some x1, x2 ∈ X then applying g to both
sides we have g(f(x1)) = g(f(x2)) so x1 = x2. Thus, f is injective. Hence f
is both surjective and injective, so it is bijective and we have proved the first
direction.
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Second direction Suppose that f is bijective. Then f is surjective so given
any y ∈ Y there exists an x ∈ X with f(x) = y. Moreover, there is only
one such x, since f is injective. Define g(y) to be equal to this x. Then
g(f(x)) = x for any x ∈ X and f(g(y)) = y for any y ∈ Y . So g is an inverse
to f . This completes the proof of the second direction. •

Countable sets

Lemma 4.1 suggests a way we can compare the ‘cardinalities’ of infinite sets.

Definition Let X and Y be infinite sets. We say that

• the cardinality of X is less than or equal to the cardinality of Y if there
exists an injection f : X → Y .

• the cardinality of X is equal to the cardinality of Y if there exists a
bijection f : X → Y .

Recall that N = {0, 1, 2, 3, ...} is the set of natural numbers.

Definition let X be an infinite set. We say that X is countable if there
exists a bijection f : N → X i.e. X has the same cardinality as N. If there
is no bijection f : N→ X then we say that X is uncountable.

Recall that Z = {0,±1,±2,±3, ...} is the set of integers and R is the set
of real numbers. We will show that Z is countable and R is uncountable.

Lemma 4.3. Z is countable.

Proof (a) Let f : N→ Z be defined by

f(x) =

{
x/2 if x ∈ N is even,

−(x + 1)/2 if x ∈ N is odd.

It can be shown that f is a bijection (see Exercise Sheet 2). Hence Z is
countable. •

Lemma 4.4. R is uncountable.
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Proof We use ‘proof by contradiction’. (We assume that the statement we
are trying to prove is false and show that this assumption implies a contra-
diction. The only way out of this contradiction is that the original statement
must be true.)

Suppose that R is countable. Then there exists a bijection f : N → R.
For each i ∈ N let f(i) = ri. Since f is surjective, the sequence (r0, r1, r2, ...)
must include all of the real numbers. We will obtain our contradiction by
constructing a real number r such that r 6= ri for all i ≥ 0.

Consider an ‘infinite decimal expansion’ of each number ri (if ri has a
finite decimal expansion then we make it infinite by adding an infinite se-
quence of zeros after the last decimal place). We define a real number r with
decimal expansion r = 0.a0a1a2..... as follows. For each i ∈ N put ai = 5 if
the (i + 1)’th digit after the decimal point in the decimal expansion of ri is
equal to 0, and otherwise put ai = 0. Then r 6= ri for all i ≥ 0 since r and ri

differ in their (i+1)’th decimal place. This means that r 6= f(i) for all i ≥ 0
which contradicts the assumption that f is surjective. The only way out of
this contradiction is that R is uncountable. •

5


